В работе продемонстрирован общий подход, позволяющий решать связанные задачи о взаимодействии упругой среды, в которой возбуждаются нестационарные волны различного типа, и вибропоглощающей преграды. Для этого рассмотрены отдельно задачи о движении упругой среды и пластин различного вида. Все поставленные задачи решаются в безразмерном виде. Для построения решений все функции были разложены в тригонометрические ряды Фурье и к ним применено прямое преобразование Лапласа по времени.
Решена задача об определении кинематических и динамических параметров среды, в которой были индуцированы волны различного вида: затухающие плоская и цилиндрическая волны. Получено решение вспомогательной задачи об определении поверхностных функций влияния упругого полупространства при возникновении поля перемещения на границе этого полупространства. Решены краевые задачи о нестационарном взаимодействии упругих сред и преграды. При это использованы различные подходы: поиск решения для однородной пластины Кирхгофа-Лява строится на результатах решения вспомогательной задачи, а для пластины Паймушина В.Н. – условия контакта среды и преграды.
Таким образом, в пространстве отображений в коэффициентах рядов были найдены перемещения в грунте после прохождения волной преграды, а также напряжения и деформации. При выполнении обратного преобразования Лапласа оказалось невозможным выполнить обращение аналитическим образом. Тогда были применены численно-аналитические методы: метод Ф.Дурбина и модифицированный метод Ф.Дурбина (метод Филона).
В результате были рассмотрены конкретные примеры взаимодействия преград и волн в упругой среде, для чего найдена эквивалентная трехслойной преграде однородная пластина. Оценка выполнялась на весьма коротких промежутках времени, в следствии чего не очевидны качественные отличия в характере волн, прошедших различные преграды. Стоит отметить, что на больших промежутках времени в безразмерных результатах очевидно, что в случае однородной пластины наблюдаются остаточные колебания, в то время как после прохождения трехслойной пластины волна экспоненциально затухает. Исходя из найденных коэффициентов редукции сделан вывод о более высокой эффективности трехслойных вибропоглощающих преград.