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Введение 

Актуальность темы 

Настоящая работа направлена на развитие и совершенствование методов 

математического моделирования динамического поведения конструктивных 

элементов, выполненных из композитных материалов. Сложность таких задач 

обусловлена неоднородностью подобных материалов, а также анизотропностью их 

физико-механических свойств. 

Как правило, для анализа систем и конструкций из композитных материалов 

используются детализированные трёхмерные численные модели, позволяющие с 

высокой точностью описывать их структуру и свойства. Такие модели дают 

качественный результат и широко применяются при расчётах ответственных 

конструкций. Однако они обладают существенным недостатком — высокой 

вычислительной сложностью, что ограничивает их применение при 

многовариантных расчётах, оптимизации, а при решении задач, требующих 

моделирования больших систем или их поведения в течение длительных 

временных интервалов. 

В связи с этим актуальной становится задача разработки альтернативных 

менее ресурсоёмких моделей, эквивалентных подробным трехмерным в смысле 

адекватности описания динамического поведения элементов и конструкций, 

выполненных из композитных материалов. 

Одним из возможных подходов к решению этой задачи является построение 

одномерных моделей на основе специальных гипотез. В настоящей работе в 

качестве такой гипотезы используется предположение о нелокальности во времени 

процесса динамического деформирования материала. 

Степень разработанности темы исследования. Вопросам приведения 

трехмерных задач деформирования твердых тел под нагрузкой к задачам меньшей 

размерности посвящены исследования: Г. Кирхгофа, А. Лява, Л. Эйлера, Я. 

Бернулли, С.П. Тимошенко, Н.А. Кильчевского, С.И. Жаворонка, Б.Д. Аннина, Э.И. 
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Григолюка, Ю.М. Волчкова, В.В. Елисеева и др. 

Задача приведения трехмерных моделей композитных материалов, 

учитывающих особенности их внутренней структуры или анизотропность их 

свойств, к одномерным не имеет единственного решения. Критерием 

эффективности выбранного подхода может служить степень соответствия 

полученных результатов экспериментальным данным в определенном классе 

задач. 

Разработке неклассических моделей, в том числе нелокальных, отражающих 

характерные особенности деформирования твердых тел при различных видах 

нагружения, посвящены исследования: Л. Больцмана, В. Вольтерра, Ю. Н. 

Работнова, И.А. Кунина, Р. Тупина, Р. Миндлина, С. А. Лурье, П.А. Белова, Ю.О. 

Соляева, Д.Б. Волкова-Богородского, А. К. Эрингена, Х. Т. Бэнкса, Д. Дж. Инмана, 

И. Лея, М. И. Фрисвелла, С. А. Адхикари, А. Пизано, П. Фучи, К. Полизотто, В. Д. 

Потапова, А.Н. Потапова, Ю.А. Россихина, М.В. Шитиковой, В.Н. Сидорова, Е. С. 

Бадьиной и многих других. 

Вопросами описания поведения неконсервативных систем занимались: 

Дж. Рэлей, У. Кельвин, В. Фойгт, Ю. Ишлинский, А. Р. Ржаницын, Н. Н. 

Давиденков, Е. С. Сорокин, И. Л. Корчинский, Я.Г. Пановко, А.И. Цейтлин, В.А. 

Фельдштейн, А.Н. Данилин, А. Нашиф, Д. Джоунс, и др. 

Целью диссертационного исследования является развитие методов 

математического моделирования динамического поведения неконсервативных 

стержневых систем, выполненных из композитных материалов, с учетом 

характерных особенностей их динамического деформирования. 

Задачи исследования: 

1) провести анализ существующих моделей динамического поведения

стержневых элементов и систем, выполненных из композитных материалов, а 

также методов приведения трехмерных систем к одномерным;  

2) разработать математическую модель нелокальных во времени упругих

свойств материала, позволяющую учесть характерные свойства динамического 
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поведения стержневых элементов и систем, выполненных из материалов с развитой 

внутренней структурой; 

3) интегрировать разработанную модель в алгоритм метода конечных 

элементов; 

4) разработать методику определения масштабного параметра 

нелокальной во времени модели с использованием экспериментальных данных; 

5) отработать методику определения масштабного параметра 

нелокальной модели на серии численных экспериментов и выявить зависимость 

масштабного параметра от геометрических характеристик поперечного сечения и 

характеристик материала стержневых элементов; 

6) для оценки достоверности модели провести сравнение полученных 

результатов с результатами лабораторных испытаний. 

Научная новизна диссертационного исследования заключается в том, что 

впервые: 

1) на основании определяющих соотношений нелокальной механики 

разработана математическая модель динамического деформирования стержневых 

систем с учетом нелокальных во времени упругих свойств материала, за счёт своей 

гибкости позволяющая описывать динамическое поведение конструктивных 

элементов, выполненных из композитных материалов; 

2) выявлен характер изменения результатов моделирования 

колебательных процессов стержневых элементов и систем при изменении значения 

масштабного параметра нелокальной модели; 

3) показано, что модель может быть использована для описания 

динамического поведения материалов, характеризующихся частотно независимым 

внутренним трением. 

Теоретическая и практическая значимость работы: 

1) на основании результатов исследования показано, что одномерные 

модели, построенные в предположении нелокальности во времени упругих свойств 
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материала, могут служить альтернативой ресурсоёмким подробным трёхмерным 

моделям при описании процессов динамического деформирования элементов и 

систем, выполненных из композитных материалов; 

2)  разработанная модель интегрирована в алгоритм МКЭ и может быть 

эффективно использована при решении задач оптимального или рационального 

проектирования стержневых систем, что крайне важно именно в случае новых 

композитных материалов, так как для их успешного внедрения принципиальным 

является поиск наиболее эффективных конструктивных решений; 

3) разработана методика определения масштабных параметров 

нелокальной во времени модели упругих свойств материала на основании 

экспериментальных данных. 

Методология исследований: 

В качестве методологической базы при выполнении исследования 

использовались основные положения механики деформируемого твердого тела, 

теории упругости и нелокальной механики. 

Положения, выносимые на защиту: 

1) интегрированная в алгоритм МКЭ нелокальная во времени модель 

динамического деформирования стержневых систем, выполненных из 

композитных материалов; 

2) методика определения управляющего параметра нелокальной во 

времени модели динамического деформирования по результатам численного или 

физического эксперимента; 

3) обоснование возможности применения одномерных стержневых 

моделей, построенных с учётом нелокальных во времени упругих свойств 

материала, при описании динамического поведения композитных элементов; 

4) обоснование возможности применения разработанной модели для 

описания динамического поведения материалов, характеризующихся частотно 

независимым внутренним трением. 
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Достоверность результатов, полученных в ходе исследования, 

обеспечивается корректным использованием обоснованных положений и методов 

механики деформируемого твердого тела, а также сравнением с результатами 

численного и лабораторного экспериментов. 

Апробация работы 

Основные результаты диссертационного исследования докладывались на 10 

научно-практических конференциях российского и международного уровня: 

• I Международная научная конференция «Соломинские чтения» (2022) 

• III, IV и V Международные научно-технические конференции 

«Проектирование, строительство и эксплуатация мостов, тоннелей и 

метрополитенов» - чтения, посвященные памяти Лавра Дмитриевича Проскурякова 

(2022, 2023, 2024) 

• XI и X Международные научные конференции «Задачи и методы 

компьютерного моделирования конструкций и сооружений» «Золотовские чтения» 

(2023, 2024) 

•  XII, XIII и XIV Всероссийские научные конференции с 

международным участием «Механика композиционных материалов и 

конструкций, сложных и гетерогенных сред» им. И.Ф. Образцова и Ю.Г. Яновского 

(2022, 2023, 2024) 

• IX Международный симпозиум «Актуальные проблемы 

компьютерного моделирования конструкций и сооружений» (2025) 
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Глава 1. Состояние вопроса и теоретические предпосылки 

исследований, выполненных в диссертации 

 

1.1. Сокращение размерности математических моделей физических 

объектов и учет характерных особенностей их поведения под нагрузкой  

 

В современном мире наблюдается устойчивый рост применения 

композитных материалов в инженерных конструкциях, благодаря их способности 

обеспечивать совокупность эксплуатационных свойств [139], недостижимых при 

применении традиционных материалов. К таким свойствам можно отнести: малый 

удельный вес, коррозионную и химическую стойкость, повышенную 

долговечность, низкую теплопроводность, радиопрозрачность/малозаметность, 

высокие демпфирующие свойства, хорошую звукоизоляция [67,131]. Возможность 

целенаправленного формирования структуры композита позволяет адаптировать 

его характеристики под конкретные условия эксплуатации. Тем не менее, 

практическое внедрение подобных материалов осложняется тем, что при расчётах 

и моделировании необходимо учитывать их неоднородность, а также ортотропные 

и анизатропные свойства. 

Практика инженерного проектирования показывает, что решение подобных 

прикладных задач требует привлечения строгих расчётных подходов и не может 

основываться лишь на эмпирических данных. Для разработки обоснованных 

проектных решений требуются математические модели, корректно отражающие 

поведение реальных физических объектов. При этом такие модели всегда в 

определённой степени абстрактны. Действительно, невозможно одновременно 

учесть взаимодействие отдельных частиц материала на микроуровне, процессы и 

явления, которые мы наблюдаем на макроуровне, и весь комплекс внешних 

факторов, действующих на объект.  

При создании математических описаний различных явлений, уровень 
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погружения в «природу вещей» должен соответствовать решаемой задаче. 

Математическая модель должна с адекватной достоверностью описывать 

рассматриваемый процесс, и, одновременно, быть настолько простой, насколько 

это возможно, то есть содержать как можно меньшее количество переменных [38]. 

Именно потребностями инженерной практики обусловлены многочисленные 

попытки поставить в соответствие трехмерным элементам реальных 

пространственных систем математические модели меньшей размерности. Данная 

проблема не имеет единственного решения, а критерием работоспособности и 

адекватности модели может служить степень соответствия эксперименту в 

определенном классе задач. 

Попытки сокращения размерности математических моделей реальных 

физических объектов предпринимались с XVIII века.  Уже тогда Я. Бернулли 

впервые установил математическую зависимость между кривизной упругой балки 

и изгибающим моментом, сведя полную пространственную задачу об изгибе 

длинного бруса к одномерной. Закон упругого изгиба лег в основу расчёта 

изгибаемых стержней, послужив отправной точкой для создания классической 

инженерной модели балки. Спустя несколько десятилетий Л. Эйлер совместно с Д. 

Бернулли развил эти идеи, и в 1751 г. ими было предложено дифференциальное 

уравнение изгиба балки, ныне лежащее в основе классической теории Эйлера–

Бернулли [80]. Кроме того, Эйлер впервые рассмотрел поперечные колебания 

балки, а также проанализировал проблему потери устойчивости сжатой  

колонны [3,103]. Таким образом, к середине XVIII века сформировалось 

понимание, что поведение изгибаемых стержневых элементов может быть 

адекватно описано одномерной балочной моделью.  

Г. Кирхгоф в 1850 г. [4,110] сформулировал гипотезы изгиба тонких упругих 

пластин, предположив, что плоские поперечные сечения пластины при 

деформации остаются плоскими и нормальными к срединной поверхности. Эта 

ключевая гипотеза позволила свести трёхмерную задачу к двумерной и позволила 

заложить фундамент классической теории пластин Кирхгофа. А. Э. Х. Ляв [47,113] 

в 1888 г. распространил постулаты Кирхгофа на криволинейные поверхности и 
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разработал теорию тонких упругих оболочек. В работе Лява тонкая оболочка 

моделируется двумерной поверхностью, а полученные уравнения ныне известны 

как классическая теория Кирхгофа–Лява. Эти труды показали, что и для 

пластинчатых и оболочечных систем возможно строгое приведение к моделям 

меньшей размерности без существенной потери точности в описании основных 

эффектов. 

К началу XX века стало очевидно, что классической теории изгиба балок 

Эйлера–Бернулли не всегда достаточно для описания балок, длина которых 

незначительно превышает характерный размер поперечного сечения. В 1921 г. С. 

П. Тимошенко [79-81] разработал теорию, позволяющую учесть влияние 

деформаций сдвига и инерции поворота поперечных сечений балки. Фактически 

Тимошенко свёл трёхмерную задачу к системе одномерных уравнений, но с 

дополнительными слагаемыми, повышающими точность результатов 

математического моделирования. Благодаря этому появилась возможность 

рассчитывать прочность широкого класса балочных конструкций, выходящих за 

пределы применимости модели Эйлера–Бернулли. 

Развитием методов приведения пространственных задач к упрощённым 

моделям занимался Н.А. Кильчевский. В своем труде [39] он предложил общий 

подход к сведению трёхмерных задач упругости к двумерным постановкам, а также 

разработал аналитические методы построения эластостатических и 

эластодинамических систем уравнений теории оболочек без введения 

дополнительных «кинематических» гипотез. 

Значительный вклад в развитие двумерных моделей пластин и оболочек внёс 

Э.И. Григолюк. Существенные результаты и методологию сведения трёхмерных 

задач теории упругости к моделям меньшей размерности изложены и 

систематизированы в монографии Э.И. Григолюка и И.Т. Селезова [21], где 

акцентируется вывод уточнённых моделей на основе специальных гипотез и 

асимптотических процедур. В ряде работ Григолюка [19,20] предложены 

приближённые и асимптотические методы решения пространственных задач путём 

их корректного сведения к расчёту пластин и оболочек; значительное внимание 
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уделено задачам устойчивости и колебаний тонкостенных конструкций. 

В последующие десятилетия Б.Д. Аннин, Ю.М. Волчков,  

В.В. Елисеев [5,6,12,17,18,24,25,37] развивали методы расчёта пластин и оболочек, 

анализируя влияние граничных условий, нелинейные колебания и устойчивость 

тонкостенных конструкций.  

Работы С.И. Жаворонка [27-30] посвящены редукции трехмерных задач 

механики деформируемого твердого тела к двумерным моделям оболочек, 

учитывающим дополнительные степени свободы и способным аппроксимировать 

трехмерное напряженно-деформированное состояние тела. Редукция 

пространственной размерности осуществляется посредством разложения 

компонентов вектора перемещений по некоторым системам функций нормальной 

по отношению к базисной поверхности оболочки координаты. Модель оболочки в 

рамках теории N-го порядка задана N+1 векторной переменной поля - 

коэффициентами разложения вектора перемещений, плотностью функционала 

Лагранжа и уравнениями связей, вытекающими из краевых условий, перенесенных 

с лицевых поверхностей оболочки на её базисную поверхность. 

Развитие неклассических двумерных моделей тонких тел связано с работами 

П.А. Жилина, посвящёнными теории материальных поверхностей.  

В рамках этого подхода оболочка рассматривается как самостоятельный 

двумерный континуум, обладающий собственными силовыми и моментными 

характеристиками. Такая постановка позволяет описывать эффекты, не 

охватываемые классическими теориями оболочек, и сближает теорию оболочек с 

обобщёнными моделями сплошных сред, учитывающими дополнительные 

внутренние степени свободы [31]. 

Для описания напряженно-деформируемого состояния конструкций из 

композитных материалов применяются различные неклассические модели. 

Сложность моделирования поведения композитных элементов под нагрузкой 

обусловлена неоднородностью рассматриваемых материалов, а также 

отротропностью или анизотропностью их физико-механических свойств [78]. 

Некоторые распространенные композитные материалы обладают выраженной 
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слоистой структурой, поэтому в инженерных задачах важную роль играет 

корректное моделирование элементов и конструкций из подобных материалов. 

Существенный вклад в эту область внес В.В. Васильев [13,14], в своих работах он 

специализировался на приведении трехмерных моделей композитных элементов к 

моделям пластин и оболочек. Он рассматривал тонкостенные композитные панели 

как эквивалентные двумерные оболочки. В.В. Васильев разработал приближённые 

теории многослойных оболочек, учитывающие поперечные сдвиги и анизотропию 

свойств материала. 

Часто для достоверного описания специфических особенностей поведения 

различных материалов под нагрузкой, в особенности динамической, строят 

модели, вводя в них дополнительные степени свободы и параметры управления. 

Такой подход позволяет учитывать существенные физические эффекты без 

неоправданного усложнения математического описания и вычислительных затрат.  

Разработке таких моделей посвящены работы Л. И. Седова [65], который 

является одним из основоположников применения теории подобия и размерного 

анализа в механике. Его подход позволил существенно упростить сложные задачи 

механики сплошной среды за счёт выявления управляющих безразмерных 

параметров. В 1944 г. Л. И. Седов предложил общие математические методы 

построения новых моделей сплошной среды, подчёркивая необходимость введения 

дополнительных переменных состояния, структурных параметров и производных 

по пространственным координатам и времени. Эта методология стала основой для 

последующего развития обобщённых континуальных моделей (с внутренними 

степенями свободы, дополнительными полями и градиентными членами), к 

которым сегодня относят микрополярные и градиентные теории. 

Микрополярная теория упругости была разработана братьями Коссера [100]. 

В рамках этой теории помимо обычного поля перемещений вводится 

дополнительное векторное поле, описывающее вращение частиц среды. Это 

приводит к тому, что тензор напряжений в общем случае становится 

несимметричным и появляются моментные напряжения, связанные с градиентами 

этих вращений. В законах, связывающих напряжения и деформации, возникают 
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параметры с размерностью длины, характеризующие масштаб микроструктуры 

материала. Такие модели позволяют описывать поведение сред с выраженной 

внутренней структурой (зернистых, волокнистых, слоистых материалов), где 

классическая теория упругости оказывается недостаточно точной. 

Одним из пионеров разработки микрополярной теории упругости в СССР 

был Э. Л. Аэро. Совместно с Е. В. Кувшинским он предложил теорию сред Аэро–

Кувшинского [7]. В отличие от теории сред Коссера, где в качестве 

дополнительных параметров состояния вводятся независимые свободные 

повороты частиц среды, в модели Аэро–Кувшинского в качестве «угловой» 

характеристики используются вихри перемещений, т.е. кинематика остаётся 

классической, а обобщение достигается за счёт введения моментных напряжений и 

характерной длины материала. Эта работа стала основой для развития теории 

Коссера в отечественной литературе. Модель Аэро–Кувшинского учитывает 

дополнительные параметры состояния, что делает её пригодной для описания 

материалов с микроструктурой, таких как поликристаллы и армированные 

композиты. Существенный вклад Е. В. Кувшинского [44] заключался в детальной 

проработке континуальной теории асимметричной упругости, он показал, что 

такие модели могут объяснить эффекты, не описываемые классической теорией, 

например зависимость напряжений от характерных размеров внутренней 

структуры. 

Параллельно развивались и другие неклассические континуальные модели. 

В 1964 г. были сформулированы две близкие модели. Р. А. Тупин [140] предложил 

модель упругого тела с кососимметричными напряжениями, с классической 

кинематикой и без независимых свободных поворотов; в энергетических 

соотношениях присутствуют градиенты кривизн и возникают моментные 

напряжения. Независимо от него Р. Д. Миндлин [116,117] предложил свою модель, 

учитывающую микрополярную упругость с независимым полем свободных 

поворотов, несимметричным тензором напряжений и тензором моментных 

напряжений. Обе эти модели развивают и уточняют идеи Коссера: первая – в 

направлении градиентной теории упругости без дополнительных степеней 
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свободы, вторая – в направлении полноценной микрополярной кинематики со 

свободными поворотами. Обе модели расширили классическую теорию, позволив 

описывать материалы с внутренней структурой – например, зернистыми 

включениями или волокнами – где обычная теория упругости не дает 

удовлетворительных результатов.  

С. А. Лурье [10,11,13,15,16,46,51,114] с соавторами развивали метод 

описания сложных сред системами с дополнительными внутренними степенями 

свободы (как консервативными, так и диссипативными). В 2009 г. С. А. Лурье 

совместно с П. А. Беловым [97] сформулировал общую теорию микрополярных 

тонких оболочек, строго обоснованную асимптотическими методами. Также С. А. 

Лурье внёс вклад в развитие градиентной теории упругости, учитывающей влияние 

градиентов деформации при описании масштабных эффектов в 

макронеоднородных материалах. Их труды содержат вариационные принципы для 

обобщённых нелокальных и микрополярных сред. Работы П. А. Белова [10] 

посвящены разработке континуальных моделей микрогетерогенных сред. В 

совместных работах с С. А. Лурье [11] он предложил микрополярную модель 

композитных материалов, учитывающую вращательные степени свободы 

включений и связанные с ними размерные эффекты. Например, в публикации 2009 

г. были выведены асимптотические переходы от дискретной микроструктуры к 

сплошной модели, что позволило учесть влияние моментных напряжений 

включений на поведение оболочек. Кроме того, П. А. Белов [51] участвовал в 

разработке теории межфазного слоя в композитах – особой тонкой прослойки 

между матрицей и включениями. При учёте непрерывного распределения свойств 

в таком межфазном слое удаётся получить лучшее соответствие результатов 

математического моделирования данным испытаний композитов по прочности и 

демпфированию. Данные исследования демонстрируют, как введение 

неклассических гипотез повышает точность и предсказательную способность 

математических моделей. 

Одновременно развивалось направление градиентной теории упругости 

применительно к наноматериалам. Ю. О. Соляев [74,75] в 2010-е гг. занимался 
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идентификацией параметров градиентных моделей для реальных материалов. Им 

предложена методика определения характерных длин на основе межатомных 

потенциалов и свойств наноструктур. Фактически Ю. О. Соляев связал параметры 

феноменологических нелокальных моделей с микроскопическими константами, 

что позволило описывать поведение нанокерамики и других 

наноструктурированных материалов на основе градиентной теории. В его работах 

показано, как внутренняя наноструктура материала влияет на его эффективную 

жесткость и прочность, причём введение градиентного интерфейсного слоя 

позволяет учесть пониженную прочность границ зерен. Эти исследования 

нацелены на практическое применение градиентных моделей для прогнозирования 

свойств перспективных материалов. 

В работах В. В. Васильева совместно с С.А. Лурье [15,16] показано, что 

интегральная постановка задачи нелокальной теории упругости и 

дифференциальные уравнения высоких порядков находятся в тесной связи. 

Рассматривая напряжения в конечной окрестности точки и представляя их в виде 

разложения в ряд Маклорена по малому пространственному параметру, В. В. 

Васильев получает уравнения равновесия, содержащие производные напряжений 

высоких порядков. При этом подчёркивается, что сохранение лишь первых членов 

разложения приводит к уравнениям классической теории упругости, тогда как учёт 

последующих членов эквивалентен введению нелокальных эффектов в 

дифференциальной форме. Введённые таким образом обобщённые напряжения, 

учитывающие градиенты напряжений, обеспечивают согласованность 

интегральной и дифференциальной постановок и приводят к похожим результатам 

при корректном выборе микроструктурного параметра среды. 

Помимо неклассических моделей, которые описывают влияние 

микроструктуры в пространстве, существует и другое направление – учёт 

наследственных свойств материалов во времени. 

Одно из первых исследований наследственных моделей опубликовал Л. 

Больцман [60], представивший в 1874 г. работу по теории упругого последействия. 

Больцман ввёл интегральный закон наследственности, согласно которому текущее 
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напряженное состояние определяется всей предшествующей историей 

деформирования материала. Этот принцип (принцип суперпозиции Больцмана) 

положил начало линейной теории наследственной упругости, где связь 

напряжений и деформаций описывается с помощью свертки с ядром релаксации. 

Развитие этой теории продолжил математик В. Вольтерра [141], который в 1912 г. 

предложил строгий аппарат для описания материалов с памятью на основе интегро-

дифференциальных уравнений. В его работах сформулированы базовые уравнения 

наследственности (уравнения Вольтерры), описывающие ползучесть и релаксацию 

напряжений во времени. Таким образом, к началу XX века были заложены основы 

описания реологических свойств материалов, с помощью интегральных 

соотношений.  

В рамках советской научной школы значительный вклад в теорию 

наследственности внёс Ю. Н. Работнов [59]. В своей фундаментальной монографии 

«Элементы наследственной механики твёрдых тел» он обобщил сведения о 

длительных деформациях, придал теории конструктивный характер и связал её с 

экспериментальными данными. Существенный вклад Ю.Н. Работнова заключается 

в предложении конкретных классов ядер операторов наследственной упругости, в 

том числе дробно-экспоненциальных, методов их идентификации по данным 

испытаний на ползучесть и релаксацию, а также во введении концепции 

кинетического повреждения и учёта старения материалов.  

На основании идей наследственной механики дальнейшее развитие 

прикладных исследований ползучести получило в работах С. Б. Крылова [43], 

посвящённых поведению бетонных и железобетонных конструкций при 

длительном нагружении. В его исследованиях длительные деформации 

рассматриваются как определяющий фактор, влияющий на перераспределение 

усилий, рост прогибов и долговечность конструкций, а предложенные им 

реологические модели учитывают нелинейную ползучесть, старение материала и 

историю нагружения, что обеспечило их практическую применимость в 

инженерных расчётах. 

Развитие идеи наследственной получили, когда был разработан аппарат 
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дробного исчисления. Этот подход используется для описания наследственных 

свойств материалов: континуальные соотношения записываются с операторами 

дробного порядка, обеспечивающими длительную память и плавный переход 

между классическими упругими и вязкоупругими моделями. 

Крупный англоязычный обзор М. В. Шитиковой и Ю. А. Россихина [129]  

собрал воедино разрозненные результаты по дробным производным и другим 

наследственным операторам в динамических задачах линейной и нелинейной 

механики твёрдого тела. Позже М. В. Шитикова в своей работе [93] 

последовательно показала, как при помощи аппарата дробного исчисления 

описываются наследственные эффекты в линейной вязкоупругости, а затухание 

колебаний подчиняется степенному, а не простому экспоненциальному закону, 

характерному для чисто вязкого демпфирования. Эти работы связывают 

классическую наследственную механику Больцмана–Вольтерры–Работнова с 

современным аппаратом дробного дифференцирования, и являются основой для 

целого направления исследований по описанию демпфирования материалов с 

применением дробного дифференцирования. 

Среди современных исследователей, работавших в области вязкоупругости, 

микрополярной механики и вычислительной механики следует отметить В. П. 

Матвеенко. Он исследовал эффекты крутящих моментов и микрополярных 

напряжений вблизи концентраторов напряжений, а также предложил 

многооператорные реологические модели для описания широкого спектра 

релаксационных процессов. Монография [2] содержит эффективные методы 

анализа и расчёта для материалов с наследственными свойствами. Матвеенко 

также изучал демпфирование в электропроводящих композитных материалах и 

электровязкоупругость [48,49]. Соавтором В. П. Матвеенко был И. Н. Шардаков, 

он участвовал в разработке моделей вязкоупругости с учётом фазовых 

превращений и временно изменяющихся свойств. Он исследовал поведение 

полимеров при кристаллизации, стекловании и отверждении, разрабатывая модели 

с внутренними переменными состояния. Кроме того, Шардаков проводил 

экспериментально-численное определение диссипативных характеристик 
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железобетона и композитных конструкций, используя метод конечных элементов 

[90]. 

Проведённый анализ показывает, что задача сведения трёхмерных моделей к 

моделям меньшей размерности сложна и не имеет универсального решения. 

Потребности практики привели к появлению самых разных подходов – от 

классических моделей Эйлера–Бернулли и Кирхгофа–Лява до современных 

микрополярных теорий и наследственных моделей. При этом каждая модель 

основана на определённых гипотезах и допущениях, и применима лишь в 

ограниченном классе задач. Для описания динамического поведения 

конструктивных элементов и систем, выполненных из композитных материалов, 

возможностей классических одно- и двумерных моделей часто оказывается 

недостаточно. Поэтому, задача построения моделей сокращенной размерности 

достаточно гибких для решения таких задач, несомненно, является актуальной.  

 

1.2. Подходы к описанию процесса диссипации энергии при колебаниях 

механических систем 

 

Энергия колебаний механических систем рассеивается со временем в силу 

внутреннего трения в материале, внешнего сопротивления сред и т.п. Поэтому для 

достоверного описания динамического поведения колеблющихся элементов 

необходимо учитывать демпфирование. Теория упругости традиционно описывает 

поведение материалов, которые могут накапливать механическую энергию без ее 

рассеивания [41,42,50]. В противоположность этому ньютоновская вязкая 

жидкость, находясь в негидростатическом напряженном состоянии, демонстрирует 

способность к рассеянию энергии, но не обладает возможностью ее накопления. 

Для описания же систем с диссипацией и гистерезисных явлений используются 

различные комбинации упругих и вязких элементов, лежащие в основе 

реологических моделей материалов. Формирование такого подхода и становление 

реологии как самостоятельной области механики в значительной степени связано 
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с работами М. Рейнера [61], одного из основоположников классической реологии.  

Классическая теория вязкоупругости предполагает, что возникающие при 

деформациях колебания затухают лишь за счёт внешнего сопротивления или 

вязкого трения. У. Томсон (лорд Кельвин) [109] предположил, что твёрдые тела 

обладают внутренней вязкостью, аналогичной вязкости в жидкостях. Он ввёл 

понятие ретардации или запаздывания – замедленного развития деформации под 

действием постоянной нагрузки. В этой гипотезе вязкая среда принадлежит самому 

телу, и диссипативные силы возникают при его деформировании. В этой 

простейшей реологической модели упругий элемент (пружина) соединён 

параллельно с вязким демпфером (поршнем в ёмкости с вязкой жидкостью) что 

позволяет описывать постепенную деформацию и неполное мгновенное 

восстановление формы при разгрузке. Экспериментальное обоснование такой 

модели дал физик В. Фойгт [142,143], изучавший внутреннее трение в кристаллах. 

В конце XIX века Фойгт ввёл постоянную вязкого сопротивления и 

продемонстрировал, что при гармонических колебаниях вязкое внутреннее трение 

вызывает сдвиг фаз между напряжениями и деформациями. Наличие 

динамического гистерезиса, выявленное при испытаниях некоторых материалов, 

свидетельствует о наличии вязкоупругости в материале. Эти идеи оформились в 

классическую теорию Кельвина-Фойгта и явились одним из первых 

количественных описаний механического гистерезиса и затухания малых 

колебаний. Модель Кельвина-Фойгта позволяет описывать свойство ползучести 

материала, но не позволяет учесть релаксацию напряжений.  

Для модели Кельвина–Фойгта характерна явная частотная зависимость 

потерь при гармоническом нагружении: коэффициент вязкости и площадь петли 

гистерезиса за цикл пропорциональны частоте. Иначе говоря, чем выше частота, 

тем больше удельные потери энергии, предсказанные этой моделью. На практике 

наблюдалась иная картина. Опыты Берлинера выявили упругий гистерезис с 

площадью петли, практически не зависящей от частоты колебаний (при прочих 

равных), и в основном зависящей от амплитуды деформаций, что шло вразрез с 

гипотезой Фойгта. Позднее эксперименты Роуэтта [130] показали, что изменение 
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площади петли гистерезиса носит частотно независимый характер в весьма 

широком диапазоне частот, что также противоречило предложенной 

Фойгтомвязко-упругой модели. Эти результаты указывали на необходимость 

разработки частотно-независимой модели внутреннего трения.  

Дж. Максвелл [115] разработал свою теорию, противоречащую гипотезе 

Кельвина-Фойгта в том смысле, что коэффициент вязкого сопротивления считался 

обратно-пропорциональным частоте колебаний. Особенность модели Максвелла 

заключается в её способности точно описывать релаксационные процессы, но при 

этом она не способна моделировать ползучесть при долговременных воздействиях, 

что в дальнейшем потребовало создания более универсальных моделей – например, 

стандартной линейной модели Кларенса М. Зинера [144], объединяющей элементы 

моделей Максвелла и Кельвина–Фойгта. 

Лорд Дж. Рэлей предложил другой подход к решению задачи описания 

демпфирующих эффектов, оказавший большое влияние на инженерные методы. В 

фундаментальной монографии [128] он ввёл понятие диссипативной функции – 

скалярной функции, добавляемой к лагранжиану системы для учёта 

энергетических потерь. Он предположил, что потери энергии происходят за счёт 

того, что тело колеблется в вязкой внешней среде, а коэффициент диссипации 

пропорционален скорости колебаний. Функция Рэлея строится как квадратичная 

форма от скоростей, что эквивалентно силам сопротивления, пропорциональным 

скорости (вязкое демпфирование).  

Зинер внёс фундаментальный вклад в теорию внутреннего трения и 

вязкоупругости. В 1937 году он разработал теорию термоупругого внутреннего 

трения [144], объясняющую, как теплоперенос между растянутыми и сжатыми 

участками колеблющегося твёрдого тела вызывает затухание. Зинер также 

предложил модель, известную сегодня как модель Зинера (или модель 

стандартного линейного тела), которая включает в себя пружины и демпферы и 

описывает как ползучесть, так и релаксацию напряжений. Эти идеи были 

обобщены в его монографии, где были сформулированы принципы описания 

энергетических потерь в металлах.  
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Несмотря на успех модели Кельвина–Фойгта и пропорционального 

демпфирования, реальное поведение материалов часто гораздо сложнее из-за 

гистерезисных эффектов и нелинейного внутреннего трения. 

В 1930-х гг Н. Н. Давиденков [22,23] проводил эксперименты, выявившие 

петли гистерезиса при нагружении–разгрузке металлов. Он обнаружил, что цикл 

напряжение–деформация не совпадает при нагружении и разгрузке, образуя 

замкнутую петлю, и указал на необходимость специальной теории для описания 

этого явления. Давиденков ввёл представление о первичном гистерезисном цикле 

и показал, что повторные малые циклы образуют вложенные петли, отражающие 

эффект памяти материала. Его имя носит эмпирический закон, описывающий 

снижение динамического модуля упругости при вибрациях, а сами работы 

положили начало изучению дислокационной природы внутреннего трения в 

отечественной школе физического материаловедения. 

Экспериментальное изучение потерь за счёт внутреннего трения 

продолжилось в 1940–50-х годах трудами И. Л. Корчинского [40]. В 

сотрудничестве с Н. Н. Давиденковым он измерял механическое внутреннее трение 

в сталях, сплавах и бетонах при вибрационных нагрузках. Корчинский обнаружил 

важную зависимость: при малых амплитудах колебаний демпфирование ведёт себя 

как вязкое (силы сопротивления пропорциональны скорости), тогда как при 

больших амплитудах проявляется режим сухого трения и нелинейный гистерезис. 

Кроме того, длительное многократное возбуждение колебаний материала изменяет 

его демпфирующие свойства. Эти результаты легли в основу строительных норм, 

учитывающих снижение сейсмических колебаний за счёт внутреннего трения.  

Чтобы математически описать сложный гистерезис, А. Ю. Ишлинский [36] 

предложил статистическую модель внутреннего трения, опирающуюся на 

элементарные гистерезисные звенья. Базовым прототипом такого звена является 

элемент Прандтля упруго-фрикционная пара «пружина – сухое трение», задающая 

элементарную петлю гистерезиса. Он рассматривал совокупность элементарных 

упругопластических элементов волокон с различными порогами упругости и 

показал, что суммарная деформация такой системы воспроизводит 
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макроскопическую петлю гистерезиса. В его модели описывается запаздывающая 

пластическая текучесть: при нагружении постепенно вовлекаются всё новые 

волокна, а при разгрузке остаются остаточные деформации. В результате возникает 

замкнутый цикл деформаций без потерь энергии в полном обратном цикле, что 

соответствует сухому трению с эффектом памяти (принцип Ишлинского). Модель 

Ишлинского–Прандтля безынерционна, обладает свойством возвращения в точку 

и приводит к петле с конечной площадью, она получила широкое распространение 

для описания упругопластического гистерезиса материалов и магнитных циклов. 

Над моделью Прандтля–Ишлинского работал В. А. Пальмов [52] – советский 

и российский механик, автор ряда работ по внутреннему трению, 

микропластической диссипации и вибропоглощению. Он разработал 

феноменологическую модель внутреннего трения на основе гистерезисных 

операторов. Он предложил концепцию пространственного затухания волн за счёт 

резонансного взаимодействия со множеством внутренних осцилляторов (механизм 

Пальмова–Слепяна). Эти идеи привели к введению понятия «вибропроводности» – 

аналогии между распространением вибрации в структуре и теплопроводностью. 

Работы Пальмова позволили свести сложные задачи волновой динамики в 

нелинейных средах к более простым одномерным моделям с эквивалентными 

диссипативными свойствами для заданных классов задач и в определённых 

диапазонах частот и амплитуд. 

А. Р. Ржаницын в монографии «Теория ползучести» [62,63] показал, что 

длительные процессы в материалах удобно описывать через наследственные ядра 

функции времени в интегральных соотношениях типа Больцмана–Вольтерра, что 

эквивалентно введению внутреннего трения и энергетических потерь при 

нагружении. В частотной области такой подход приводит к феноменологическому 

демпфированию без явного вязкого слагаемого. Для колебательных задач стержней 

и балок это означает: внутреннее трение, задаваемое наследственными ядрами, 

уменьшает амплитуду и увеличивает логарифмический декремент, при этом сдвиг 

собственных частот определяется частотно-зависимой «эффективной» 

жёсткостью. Такой формализм согласует описание релаксации/ползучести с 
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наблюдаемым в динамике затуханием и используется как практический способ 

учёта диссипации в расчётах. 

Как отмечал Е. С. Сорокин [77], в задачах динамики конструкций инженеры 

фактически ищут простую феноменологическую модель внутреннего трения, в 

которой затухание описывается постоянным коэффициентом потерь, практически 

не зависящим от частоты в рабочем диапазоне. Экспериментальные данные по 

металлам показывают, что логарифмический декремент колебаний во многих 

случаях слабо зависит от частоты, тогда как вязкоупругие модели типа Кельвина–

Фойгта или Максвелла предсказывают линейную или обратную частотную 

зависимость потерь. Опираясь на работы Н.Н. Давиденкова, он развил теорию 

внутреннего трения в колебаниях упругих систем, в своей монографии [76] «К 

теории внутреннего трения при колебаниях упругих систем» Е. С. Сорокин 

предложил описывать внутреннее трение через комплексный модуль упругости 

(или комплексную жёсткость) материала, где присутствовал коэффициент 

механических потерь, принимаемый постоянным для данного материала. Такая 

гипотеза частотно-независимого внутреннего трения (комплексной жёсткости) 

обеспечивает практически постоянный логарифмический декремент и даёт 

хорошее соответствие результатам динамических испытаний. Гипотеза 

комплексной жесткости стала широко используемой инженерной моделью 

внутреннего трения при расчётах на колебания для некоторых материалов. 

Важным аспектом для стержневых систем является влияние демпфирования 

на устойчивость и развитие колебаний при воздействии неконсервативных сил. 

Известно, что диссипация может как стабилизировать систему, так и вызвать 

увеличение размаха колебаний при определённых сочетаниях нагрузок.  

Я. Г. Пановко [53,54] в монографии «Устойчивость и колебания упругих систем» 

исследовал действие следящих сил (неконсервативных нагрузок) с учётом 

демпфирования. Он показал, что небольшое вязкое сопротивление способно 

повышать критическую силу потери устойчивости стержня. С другой стороны, 

Пановко отметил, что при больших скоростях или сухом трении могут возникать 

самовозбуждающиеся колебания – например, автоколебания в механизмах с 



25 

 

люфтами. Он отдельно изучал вибрации машин с сухим трением в сочленениях, 

выявляя условия возникновения скрипа и биений, а также способы их 

предотвращения посредством добавления целенаправленного демпфирования.  

Значительный вклад в изучение колебаний с сухим трением внёс А. И. 

Цейтлин [86-88]. Он исследовал задачи автоколебаний роторов на сухих 

подшипниках, трения в тормозах и других систем с запаздыванием силы трения. В 

своих исследованиях он предложил методы предотвращения нежелательных 

автоколебаний путём введения дополнительных демпфирующих связей или 

виброгасителей.  

На рубеже XX–XXI веков особое развитие получили практические методы 

гашения вибраций и выбор материалов, обладающих высокой демпфирующей 

способностью. В монографии А. Нашифа, Д. Джонса и Дж. Хендерсона [118] 

систематизированы современные подходы к описанию внутреннего 

демпфирования. В ней описаны механизмы потерь в различных материалах 

(металлах, полимерах, композитах), а также технологические приёмы снижения 

вибраций – от наклейки вязкоупругих слоёв до установки специальных демпферов.  

Примером материаловедческого подхода являются исследования В. А. 

Фельдштейна [82] по разработке металлических сплавов с повышенным 

внутренним трением. Под его руководством были созданы ферромагнитные 

высокодемпфирующие сплавы (например, чугуны с графитными включениями), 

способные рассеивать значительную долю вибрационной энергии. 

Экспериментально были измерены зависимости коэффициента потерь таких 

материалов от температуры и частоты колебаний. Эти данные  

внедрены при проектировании узлов машин (станин, опор станков, корпусов 

приборов), где требовалось пассивное гашение вибраций  

за счёт свойств материала. Появление специальных демпфирующих материалов 

расширило арсенал средств виброизоляции наряду с чисто конструктивными 

мерами. 

Современная наука о демпфировании активно развивала стохастические, и 

нелинейные модели, особенно применительно к прочности сооружений. 
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Исследования А. Н. Данилина [101] посвящены описанию гистерезисных 

эффектов, возникающих в системах различного назначения, с использованием 

кинематического подхода. Параметры предлагаемой модели могут быть 

определены экспериментально на основании данных циклических испытаний. 

Предлагаемы подход применим при описании динамического поведения 

маятниковых демпферов, предназначенных для гашения колебаний проводов 

линий электропередачи. 

Также, в применении к инженерным задачам воздушных линий 

электропередачи были исследованы колебания проводов совместно с 

маятниковыми демпферами [66] в том числе с учётом обледенения. На основании 

серии численных экспериментов были определены положения, при установке в 

которые демпфирующих устройств при монтаже, достигается наибольший уровень 

диссипации энергии колебаний.  

Вопросами внутреннего трения и разработки вибропоглащающих систем 

посвящены работы В. И. Ерофеева. В своей монографии «Волновые процессы в 

твёрдых телах с микроструктурой» [26] он развил систематическую теорию 

распространения волн в упругих телах с микроструктурой.  

Им предложены методы моделирования волнового взаимодействия в 

микрополярных с внутренним трением и свободными вращениями.  

Ерофеев также внёс вклад в разработку вибропоглощающих конструкций и систем 

защиты от вибрации на основе инерционно-диссипативных компонентов.  

Его работы объединяют теоретические аспекты нелокальной  

механики и практические методы управления внутренним трением в инженерных 

системах. 

В работах В. Б. Зылева и П. О. Платнова [32-34] центральной является идея 

экспериментально обоснованного описания внутреннего трения как частотно-

независимого свойства материала. Авторы последовательно показывают, что при 

корректной постановке эксперимента – с минимизацией внешних источников 

потерь энергии (опоры, воздух, приборы регистрации) – логарифмический 

декремент затухания практически не зависит от частоты колебаний, что 
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подтверждается серией экспериментов при изменении массы, длины пролёта и 

формы собственных колебаний. В ряде работ вводится и развивается концепция 

моделей, эквивалентных по демпфированию, позволяющих интерпретировать 

результаты экспериментов на изгиб как эквивалентные одноосному растяжению – 

сжатию. На этой основе обосновывается применение обобщённой модели 

Прандтля, обеспечивающей частотно-независимое внутреннее трение и 

учитывающей зависимость демпфирования от уровня напряжений. Таким образом, 

совокупность экспериментальных и модельных результатов приводит авторов к 

выводу о принципиальной ограниченности частотно-зависимых аппроксимаций и 

о необходимости использования моделей внутреннего трения, не зависящих от 

частоты колебаний. 

Несмотря на значительное количество моделей и подходов, предложенных 

различными исследователями для описания процессов внутреннего трения и 

наследственных свойств материалов, универсального и всеобъемлющего 

теоретического описания на настоящий момент не существует. Каждая из моделей 

отражает лишь часть сложной физической картины. Одни подходы обеспечивают 

почти постоянные потери лишь в ограниченном диапазоне частот, другие 

оказываются неудобными во временной области или требуют введения большого 

числа параметров. В частности, до сих пор не построена единая, физически 

обоснованная и одновременно удобная в расчётах модель частотно-независимого 

внутреннего демпфирования, хотя многие экспериментальные исследования 

свидетельствуют именно о частотно-независимом характере этого явления На 

практике чаще всего применяются феноменологические модели, хоть и не 

физичные, но несложные в смысле вычислений и позволяющие в рамках решаемых 

задач получить адекватное соответствие реальным процессам: модель Кельвина-

Фойгта, модель Рэлея, и др. Однако для определённых материалов [89] 

возможность описания частотной независимости внутреннего демпфирования 

позволила бы значительно повысить достоверность результатов математического 

моделирования. 
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1.3. Нелокальные модели динамического поведения конструктивных 

элементов и систем 

 

Альтернативой подробным трехмерным моделям в смысле адекватности 

описания динамического поведения элементов и конструкций, выполненных из 

композитных материалов, могут быть одномерные модели, построенные с 

применением специальных гипотез. Один из подходов к решению задач 

сокращения размерности заключается в применении основных положений 

нелокальной механики при построении математических моделей. Такие модели 

называют нелокальными. 

К классу нелокальных моделей можно отнести модели, построению которых 

посвящены работы И. А. Кунина [45]. Он рассмотрел внутренние степени свободы 

материальных точек и силы дальнодействия показав, что наличие характерного 

микромасштаба приводит к отклонениям от классической модели при 

распространении волн в материале. По сути, Кунин обобщил классическую 

локальную модель упругости до нелокальной теории, в которой напряжение в 

точке зависит не только от деформированного состояния в этой точке, но и от 

распределения деформаций по окружающей области. Теория Кунина применима 

для описания размерных эффектов при расчете элементов, выполненных из 

современных композитов и материалов с выраженной внутренней структурой. 

Так же существуют структурные модели, в которые в отличие от континуума 

явным образом входят геометрические параметры структуры – размеры и форма 

частиц, от которых в конечном счете зависят и эффективные модули упругости 

различного порядка. Меняя эти параметры, можно управлять физико-

механическими свойствами модели среды, что принципиально нельзя сделать в 

рамках континуального описания. Прозрачность связи структуры с 

макропараметрами среды открывает возможность целенаправленно проектировать 

материалы с заданными свойствами. Недостатками структурного моделирования 

являются не универсальность процесса моделирования и сложность учета 

нелинейных и нелокальных эффектов взаимодействия. Характерной чертой всех 
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таких теорий является их явная или неявная нелокальность. Последняя, в свою 

очередь, проявляется в том, что теории содержат параметры, имеющие размерность 

длины. Эти масштабные параметры могут иметь различный физический смысл: 

расстояние между частицами в дискретных структурах, размер зерна или ячейки, 

характерный радиус корреляции или дальнодейстующих сил и т. д.  

Развитием нелокальных моделей стало явное введение представления 

упругих свойств материала, как нелокальных в пространстве. А. К. Эринген [102] 

в серии работ 1972 года сформулировал нелокальную теорию упругости, в которой 

напряжённое состояние в точке определяется распределением деформаций по 

окрестности этой точки. Эринген с соавторами вывел интегро-дифференциальные 

уравнения для описания такого нелокального континуума, показав их 

согласованность с основными законами сохранения и термодинамики. Ключевым 

параметром стал масштабный параметр, определяющий размеры области, на 

которой «размазано» влияние деформаций в окрестности рассматриваемой точки, 

и скорость убывания этого влияния по мере удаления от неё. Нелокальная модель 

Эрингена позволила описать ряд размерных эффектов, в частности повышение 

жёсткости наноструктур по сравнению с прогнозами классических теорий. 

Уравнения Эрингена применяются для описания поведения наноматериалов и 

композитов, где наблюдается зависимость свойств от внутренней структуры 

образца. В дальнейшем предложенный подход рименялся в работе [96], где 

нелокальная модель, подобная модели Эрингена, совместно с моделью, основанной 

на аппарате дробного исчисления, используется для анализа изгиба балок Эйлера–

Бернулли из пористых вязкоупругих материалов. 

А.А. Пизано и П. Фуски [119] получили аналитическое решение задачи о 

растяжении стержня, описываемого нелокальной моделью Эрингена. Согласно 

этому решению, напряжение в любом сечении стержня определяется 

деформациями в окрестности этого сечения, а введение конечного масштаба 

влияния сглаживает пики напряжений по сравнению с классической моделью. Для 

предельных значений масштаба нелокальности решение сводится к классическому, 

т.е. данная модель является обобщением классической локальной.  



30 

 

Важный вклад в разработку нелокальных моделей внёс и К. Полиццотто 

[120], который в своей работе «Нелокальная упругость и связанные вариационные 

принципы» строго сформулировал принцип возможных перемещений для 

интегрально-нелокальных моделей, вывел соответствующие естественные и 

основные граничные условия, а также доказал корректность краевых задач 

(условия существования и единственности решений при допустимых ядрах 

памяти). Тем самым были систематизированы ранее разрозненные результаты, 

полученные для разных типов ядер, форм функционалов энергии, и граничных 

условий. Работы Палиццотто способствовали тому, что нелокальные модели были 

признаны применимыми для расчетов нанокомпозитов и микромеханических 

элементов. 

Ранее Х. Т. Бэнкс и Д. Дж. Инман [95] рассматривали четыре модели 

демпфирования. В своей работе они на основе экспериментов с композитными 

балками сравнивались различные механизмы демпфирования, такие как внешнее 

вязкое демпфирование (трение о внешнюю среду), модель внутреннего трения 

Кельвина–Фойгта, а также пространственный и временной гистерезис. Две 

последние модели построены с применением положений нелокальной механики 

Ю. Лей, М. И. Фриссвелл, С. Адхикари [111] разработали методы модального 

анализа стержневых элементов с невязким внутренним демпфированием. Они 

ввели в модель интегральное ядро в виде убывающей экспоненциальной функции, 

позволяющее представить демпфирующие силы в системе, зависящими от истории 

изменения скоростей деформаций. Они применили метод Бубнова-Галёркина для 

расчёта собственных частот и форм колебаний балки с учётом демпфирования в 

пространстве. Показано, что введение ядра памяти изменяет комплексные 

собственные значения: модальные частоты и, главное, скорости затухания зависят 

от формы и параметров ядра. Эта работа получила развитие в [106], где 

рассматривается динамическое поведение изгибаемых балок Эйлера-Бернулли с 

отдельными участками нелокальности. 

А. Н. Потапов [55,121-125] одним из первых в своих трудах сформулировал 

обобщённые модели упругих стержней и балок, учитывающие пространственную 
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нелокальность напряжений и распределённое внутреннее трение. Его исследования 

по нелокальному демпфированию показали, что учет влияния удалённых зон 

деформации позволяет точнее описывать затухание колебаний в конструкциях. 

В. Д. Потапов [56-58,126] исследовал устойчивость упругих систем с учётом 

пространственно-нелокальности жесткостных и демпфирующих свойств 

материала. В работе [56] он рассмотрел динамическую устойчивость композитного 

стержня, одновременно учитывая нелокальную в пространстве упругость и 

нелокальное в пространстве демпфирование. Показано, что такая модель 

отличается высокой управляемостью при расчетах устойчивости конструкций. 

Отмечается, что наличие нелокального в пространстве внутреннего трения 

повышает критическую нагрузку потери устойчивости по Ляпунову по сравнению 

с локальными моделями.  

На основе этих результатов под руководством В. Д. Потапова Е. С. Бадьиной 

[91] была разработана модель вынужденных поперечных колебаний линейных и 

нелинейных стержневых элементов, находящихся под действием периодической 

детерминированной и стохастической стационарной нагрузки с учётом 

нелокального в пространстве демпфирования. В работе представлено численно-

аналитическое решение задачи о нелокальном демпфировании с использованием 

метода Бубнова–Галёркина для сведения исходной задачи к системе интегро-

дифференциальных уравнений. В работе [92] предложена методика определения 

масштабного параметра нелокальной модели по экспериментальным данным с 

использованием метода наименьших квадратов. Показано, что одномерные модели 

композитных стержневых элементов, построенные в предположении 

пространственной нелокальности могут служить альтернативой подробным 

трехмерным конечно-элементным моделям.  

В развитии моделей нелокального демпфирования, важную роль сыграли 

работы В. Н. Сидорова [68,69,71,72,105,132-135]. В ряде публикаций им совместно 

с его учениками была предложена и последовательно развита модель внутреннего 

демпфирования с памятью, в которой демпфирующие силы зависят не только от 

текущих значений скоростей деформаций, но и от их предыстории, описываемой 
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свёрткой с интегральным ядром по времени. Такая постановка была реализована в 

рамках конечно-элементного подхода и применялась для решения задачи о 

колебаниях изгибаемых композитных балок и рамных систем [71,72]. В рамках 

этих исследований разработана одномерная модель балки Бернулли–Эйлера с 

наследственным демпфированием, где диссипативные силы выражены через 

свёртку скоростей деформаций с ядром памяти и набором управляемых параметров 

(масштаб нелокальности, «вес» памяти, длительность запоминания). Разработана 

модификация неявной схемы Ньюмарка для интегро-дифференциальной 

постановки. Показано, что калибровка ядра по результатам трёхмерного 

численного эксперимента позволяет существенно повысить достоверность 

одномерных балочных моделей колеблющихся композитных элементов по 

сравнению с классической локальной во времени моделью Кельвина–Фойгта. 

Изучение состояния вопроса показало, что нелокальный подход позволяет 

создавать гибкие и управляемые модели, позволяющие достоверно описывать 

поведение материалов с развитой внутренней структурой. Тем не менее 

существуют задачи, для решения которых возможностей существующих моделей 

и теорий недостаточно. Разработка новых типов нелокальных моделей позволила 

бы существенно расширить класс решаемых задач.   

  

1.4. Постановка задачи 

 

Физический закон вязкоупругости (по модели Фойгта) [142] имеет вид: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 + 𝑋𝑖𝑗𝑘𝑙
𝜕𝜀𝑘𝑙

𝜕𝑡
 , (1.1) 

где 𝑋𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙𝑡𝑒  , 𝐶𝑖𝑗𝑘𝑙 − тензор упругих постоянных,  𝑋𝑖𝑗𝑘𝑙 − тензор 

коэффициентов вязкости, 𝑡𝑒 −  время запаздывания,  𝜎𝑖𝑗, 𝜀𝑘𝑙 − компоненты тезоров 

деформаций и напряжений. 

𝜀𝑘𝑙 =
1

2
(∇𝑘𝑢𝑙 + ∇𝑙𝑢𝑘) . (1.2) 

– соотношения Коши 
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При переходе к нелокальной постановке задачи в самом общем случае 

предполагается, что упругие и демпфирующие силы в некоторой точке зависят не 

только от значений деформаций и скоростей деформаций в данной точке, но и от 

значений деформаций и скоростей деформаций на некоторой области, 

прилегающей к рассматриваемой точке, на всей истории деформирования тела. 

Причем влияние точек в пространстве друг на друга тем меньше, чем больше 

расстояние между ними, а влияние предыдущей истории деформирования тела на 

его состояние в текущий момент убывает со временем. 

При таком подходе определяющее соотношение (1.1) принимает вид [111]: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∫ ∫𝐾(𝑟̅, 𝜃̅)

𝑡

−∞

𝑅(𝑡, 𝜏)𝜀𝑘𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

+ 𝑋𝑖𝑗𝑘𝑙 ∫ ∫𝐶(𝑟̅, 𝜃̅)

𝑡

−∞

𝐺(𝑡, 𝜏)𝜀𝑘̇𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

 . 

(1.3) 

Здесь 𝐾, 𝐶 − ядра нелокальных в пространстве операторов упругости и 

демпфирования соответственно;  𝑅, 𝐺 − ядра нелокальных во времени операторов 

упругости и демпфирования соответственно;  𝑟̅, 𝜃̅ − вектора пространственных 

координат; 𝑡, 𝜏 − время; 𝛺 – окрестность рассматриваемой точки. 

Соотношения Коши (1.2) остаются неизменным, т.е. кинематика считается 

локальной.  

Ядра нелокальных операторов (1.3) считаются инвариантными относительно 

сдвигов во времени и пространстве, тогда:  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∫ ∫𝐾(|𝑟̅ − 𝜃̅|)

𝑡

−∞

𝑅(𝑡 − 𝜏)𝜀𝑘𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

+ 𝑋𝑖𝑗𝑘𝑙 ∫ ∫𝐶(|𝑟̅ − 𝜃̅|)

𝑡

−∞

𝐺(𝑡 − 𝜏)𝜀𝑘̇𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

 

(1.4) 

Тензор упругих модулей обладает свойством симметрии: 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑘𝑙𝑖𝑗  . (1.5) 
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Анизотропные или ортотропные трехмерные твердотельные модели 

являются достаточно подробными и позволяют задавать материалу различные 

свойства в различных направлениях, поэтому дополнительно усложнять их, вводя 

нелокальные ядра, имеет смысл только в том случае, если это позволяет отразить 

конкретные особенности поведения материала или явления, имеющие место в 

реальности. 

В модели (1.4) ядровые функции считаются изотропными, т.е. скорости 

убывания влияния точек во времени и пространстве друг на друга одинаковы во 

всех направлениях. В самом общем случае ядра могут рассматриваться как 

анизотропные, т.е. имеющие разную скорость убывания влияния в различных 

направлениях. 

Учет всех четырех типов нелокальности одновременно при моделировании 

динамического поведения твердых тел имеет смысл только в том случае, если этого 

требуют реальные физические особенности материала.  

В настоящее время нелокальные модели в основном используются для 

построения феноменологического описания характерных свойств динамического 

поведения материалов со сложной внутренней структурой. Для этого используются 

различные частные случаи выражения (1.4), позволяющие добиться достаточной 

точности вычислений без излишнего усложнения модели.  

Путем использования в качестве ядровой функции 𝛿 − функции Дирака из 

самого общего нелокального соотношения между напряжениями и деформациями 

можно получить частные случаи нелокальных моделей. 

В случае представления всех 4 ядер в виде 𝛿 − функции Дирака из выражения 

(1.4) получим: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∫ ∫𝛿(|𝑟̅ − 𝜃̅|)

𝑡

−∞

𝛿(𝑡 − 𝜏)𝜀𝑘𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

+ 𝑋𝑖𝑗𝑘𝑙 ∫ ∫𝛿(|𝑟̅ − 𝜃̅|)

𝑡

−∞

𝛿(𝑡 − 𝜏)𝜀𝑘̇𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

 . 

(1.6) 
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Нетрудно увидеть, что выражение (1.5) аналогично локальной классической 

вязкоупругой модели (1.1), которая, таким образом является частным случаем 

нелокальной модели. 

Путем различных комбинаций 𝛿 − функций с нелокальными ядрами из 

соотношения (1.4) можно получить: 

- нелокальную в пространстве модель упругих свойств материала, которая 

аналогична модели Эрингена [102]: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∫ ∫𝑲(|𝒓̅ − 𝜽̅|)

𝑡

−∞

𝛿(𝑡 − 𝜏)𝜀𝑘𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

+ 𝑋𝑖𝑗𝑘𝑙 ∫ ∫𝛿(|𝑟̅ − 𝜃̅|)

𝑡

−∞

𝛿(𝑡 − 𝜏)𝜀𝑘̇𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

 . 

(1.7) 

- Нелокальную в пространстве модель внутреннего трения [57]:  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∫ ∫𝛿(|𝑟̅ − 𝜃̅|)

𝑡

−∞

𝛿(𝑡 − 𝜏)𝜀𝑘𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

+ 𝑋𝑖𝑗𝑘𝑙 ∫ ∫𝑪(|𝒓̅ − 𝜽̅|)

𝑡

−∞

𝛿(𝑡 − 𝜏)𝜀𝑘̇𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

 . 

(1.8) 

- Нелокальную во времени модель внутреннего трения [132]:  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∫ ∫𝛿(|𝑟̅ − 𝜃̅|)

𝑡

−∞

𝛿(𝑡 − 𝜏)𝜀𝑘𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

+ 𝑋𝑖𝑗𝑘𝑙 ∫ ∫ 𝛿(|𝑟̅ − 𝜃̅|)

𝑡

−∞

𝑮(𝒕 − 𝝉)𝜀𝑘̇𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

 . 

(1.9) 

С целью расширения класса решаемых задач в настоящей работе 

разрабатывается модель, основанная на четвертом типе нелокальности, которая 

ранее не исследовалась подробно. Модель построена на предположении, что 

упругие силы в системе зависят не только от её деформированного состояния в 

рассматриваемый момент времени, но и от предыдущей истории  

деформирования системы [104], то есть упругие свойства материала  
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считаются нелокальными во времени: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∫ ∫𝛿(|𝑟̅ − 𝜃̅|)

𝑡

−∞

𝑹(𝒕 − 𝝉)𝜀𝑘𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

+ 𝑋𝑖𝑗𝑘𝑙 ∫ ∫𝛿(|𝑟̅ − 𝜃̅|)

𝑡

−∞

𝛿(𝑡 − 𝜏)𝜀𝑘̇𝑙(𝜃, 𝜏)𝑑𝜏𝑑𝜃

𝛺

 . 

(1.10) 

Интегрирование 𝛿 − функций в (1.10) приводит к: (1.11) 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∫𝑅(𝑡 − 𝜏)𝜀𝑘𝑙(𝜏)𝑑𝜏

𝑡

−∞

+ 𝑋𝑖𝑗𝑘𝑙𝜀𝑘𝑙̇  (1.11) 

Строго говоря, нижний предел интеграла ядровой функции равен −∞, но при 

решении прикладных задач нижний предел можно принять равным 0, учитывая 

таким образом влияние истории деформирования тела только от начала 

колебательного процесса [59]. 

Для моделирования функции памяти могут быть использованы ядра 

различного типа [111], такие как: 

– ядро в виде экспоненциальной функции: 

R(t − τ) =
1

𝜂𝑟
e
−

1
𝜂𝑟

(t−τ)
 (1.12) 

 

Рисунок 2.1 – Экспоненциальное ядро интегрального оператора нелокальной 

модели 
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– ядро в виде функция ошибок: 

R(𝑡 − 𝜏) =
2

𝜂𝑟
√𝜋⁄ 𝑒

−(
1
𝜂𝑟

)
2
(𝑡−𝜏)2

 (1.13) 

 

Рисунок 2.2 – Ядро интегрального оператора нелокальной модели в виде 

функции ошибок 

– ядро в виде ступенчатой (кусочно-постоянной) функции: 

R(𝑡 − 𝜏) =
1

𝜂𝑟
, при (𝑡 − 𝜏) ≤ 𝜂𝑟

0, при других значениях (𝑡 − 𝜏)

 (1.14) 

 

 

Рисунок 2.3 – Ядро интегрального оператора нелокальной модели в виде 

ступенчатой (кусочно-постоянной) функции 
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– ядро в виде линейной функции: 

R(𝑡 − 𝜏) =
1

𝜂𝑟
(1 −

1

2

(𝑡 − 𝜏)

𝜂𝑟
) , при (𝑡 − 𝜏) ≤ 2𝜂𝑟

0, при других значениях (𝑡 − 𝜏)

 (1.15) 

 

Рисунок 2.4 – Ядро нелокального во времени деформирования в виде 

линейной функции 

 

Все перечисленные ядровые функции должны отвечать условию 

нормирования:  

∫𝑅(𝑡 − 𝜏)

𝑡

0

𝑑𝜏 = 1  (1.16) 

Общим свойством перечисленных функций с учетом условия (1.16) является 

то, что при малых значениях масштабного параметра ядровая функция сводится к 

𝛿 − функции Дирака, а модель к локальной классической. 

В настоящей работе в качестве ядра нелокального оператора используется 

функция ошибок (1.13), в которой для более компактной записи параметр 𝜂 

представляет обратную величину и равен:  

 𝜂 =
1

𝜂𝑟
. (1.17) 

 

  



39 

 

Тогда выражение (1.13) примет вид: 

𝑅(𝑡 − 𝜏) =
2𝜂

√𝜋
𝑒−𝜇2(𝑡−𝜏)2  . (1.18) 

Как и для всех нелокальных моделей, определяющей характеристикой 

является масштабный параметр 𝜂, который задает степень нелокальности упругих 

свойств материала во времени. Так как 𝜂 - обратная величина относительно 𝜂𝑟, её 

влияние на характер ядровой функции также противоположно влиянию 𝜂𝑟: чем 

меньше масштабный параметр 𝜂, тем более нелокальной является модель. При 

достаточно высоком значении масштабного параметра ядровая функция сводится 

к 𝛿 − функции, а модель сводится к локальной классической. На рисунке 1 

показано, как этот параметр влияет на скорость убывания ядровой функции. 

 

 

Рисунок 2.5 – Графики, показывающие влияние параметра 𝜂 на 

нелокальность модели 

 

В работах [73,127,133] показано, что нелокальный подход может быть 

успешно использован для построения адекватных одномерных аналогов 

подробным 3х-мерным моделям из твердотельных элементов, выполненных из 

материалов со сложной внутренней структурой. И в том числе подобный подход 

позволяет снизить затраты по времени для моделирования и расчетов, так как 
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подробные твердотельные модели являются очень ресурсоемкими. 

В настоящей работе нелокальная во времени модель динамического 

деформирования (1.11) рассматривается применительно к системам, состоящим из 

стержневых элементов. 
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Глава 2. Построение нелокальной во времени модели 

динамического деформирования стержневых элементов и систем 

 

2.1. Вывод конечно-элементных соотношений нелокальной во времени 

модели динамического деформирования 

 

Так как метод конечных элементов является преобладающим численным 

методом решения прикладных задач, было решено интегрировать нелокальную во 

времени модель динамического деформирования в алгоритм этого метода. 

Для вывода конечно-элементных соотношений нелокальной во времени 

модели динамического деформирования использовался принцип возможных 

перемещений [3,83]: 

∫ 𝜌𝐴𝑢̈𝑖𝛿𝑢𝑖𝑑𝑉

𝑉

+ ∫ 𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉

𝑉

= ∫ 𝑞𝑖𝛿𝑢𝑖𝑑𝐴

𝐴

+ ∫ 𝐹𝑖𝛿𝑢𝑖𝑑𝑉

𝑉

 . (2.1) 

Здесь 𝑖, 𝑗 = 1,2,3, 𝜌𝐴 − плотность материала, 𝑞𝑖  − поверхностные силы, 𝐹𝑖 − 

объёмные силы, 𝜎𝑖𝑗 − напряжение, 𝛿𝑢𝑖 − поле возможных перемещений, 𝛿𝜀𝑖𝑗 −

 поле возможных деформаций, 𝑢̈𝑖 − ускорение. 

Используя определяющее соотношение нелокальной модели динамического 

деформирования (1.11), можем переписать выражение (2.1) в виде: 

∫ 𝜌𝐴𝑢̈𝑖𝛿𝑢𝑖𝑑𝑉

𝑉

+ ∫ (𝐶𝑖𝑗𝑘𝑙 ∫𝑅𝑡(𝑡 − 𝜏)𝜀𝑘𝑙(𝜏)𝑑𝜏

𝑡

0

+ 𝑋𝑖𝑗𝑘𝑙𝜀𝑘̇𝑙)𝛿𝜀𝑖𝑗𝑑𝑉

𝑉

= ∫ 𝑞𝑖𝛿𝑢𝑖𝑑𝐴

𝐴

+ ∫ 𝐹𝑖𝛿𝑢𝑖𝑑𝑉

𝑉

 . 

(2.2) 

Разделим в выражении (2.2) слагаемое, отвечающее за нелокальную 

жёсткость и за внутреннее вязкое трение, на две части: 
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∫ 𝜌𝐴𝑢̈𝑖𝛿𝑢𝑖𝑑𝑉

𝑉

+ ∫ 𝐶𝑖𝑗𝑘𝑙 ∫𝑅𝑡(𝑡 − 𝜏)𝜀𝑘𝑙(𝜏)𝑑𝜏

𝑡

0

𝛿𝜀𝑖𝑗𝑑𝑉

𝑉

+ ∫ 𝑋𝑖𝑗𝑘𝑙𝜀𝑘̇𝑙𝛿𝜀𝑖𝑗𝑑𝑉

𝑉

= ∫ 𝑞𝑖𝛿𝑢𝑖𝑑𝐴

𝐴

+ ∫ 𝐹𝑖𝛿𝑢𝑖𝑑𝑉

𝑉

 . 

(2.3) 

 

При использовании конечно-элементного подхода поле действительных 

перемещений заменяется приближенным: 

𝑢̃ ≈ 𝑵𝒅 , (2.4) 

где 𝑵 − матрица функций формы, связывающая узловые перемещения с полем 

приближенных перемещений,  𝒅 − вектор узловых перемещений. 

Обозначив матрицу дифференциальных операторов как A, можем записать:  

𝑨𝑵 = 𝑩 . (2.5) 

Тогда поле приближенных деформаций примет вид:  

 𝜀̃ = 𝑨𝑵𝒅 = 𝑩𝒅 . (2.6) 

Здесь 𝑨 − матрица дифференциальных операторов, 𝑩 − матрица 

производных от функций формы, 𝑢̃ − поле приближенных перемещений,  𝜀̃ − поле 

приближенных деформаций. 

Опуская возможные узловые перемещения, выражение (14) мы можем 

переписать в матричной форме: 

∫ 𝜌𝑵𝑻𝑵𝑑𝑉𝒅̈

𝑉

+ ∫ 𝑩𝑻𝑿𝑩𝑑𝑉𝒅̇

𝑉

+ ∫ 𝑩𝑻𝑪

𝑉

∫𝑅(𝑡 − 𝜏)𝑩𝒅(𝜏)𝑑𝜏

𝑡

0

𝑑𝑉

= ∫ 𝑵𝒒𝑑𝐴

𝐴

+ ∫ 𝑵𝑭𝑑𝑉

𝑉

 . 

(2.7) 

Здесь 𝑭 – вектор объёмных сил, 𝒒 – вектор поверхностных сил, 𝒅̇ − вектор 

узловых скоростей, 𝒅̈ − вектор узловых ускорений, 𝑿 − матрица вязкости при этом 

𝑿 = 𝑪𝑡𝑒, где 𝑡𝑒 −время запаздывания, 𝑪 − матрица упругости. 
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Для изгибаемой балки деформации связаны с функцией прогиба следующим 

соотношением: 

𝜀11 = −𝑦
𝑑2𝑣

𝑑𝑥2
 . (2.8) 

Здесь 𝑥 − продольная координата балки, 𝑦 − расстояние от нейтрального 

слоя изгибаемой балки до точки, в которой вычислены деформации 𝜀11,  𝑣 − 

функция прогиба балки. 

Приближенное решение 𝑣̃ ≈ 𝑵𝒅 для каждого элемента балки можно записать 

с использованием интерполяционных полиномов Эрмита [98]: 

𝑵 =

[
 
 
 
 
 
 
 
 
2𝑠3

𝑙3
−

3𝑠2

𝑙2
+ 1

𝑠3

𝑙2
−

2𝑠2

𝑙
+ 𝑠

3𝑠2

𝑙2
−

2𝑠3

𝑙3

𝑠3

𝑙2
−

𝑠2

𝑙 ]
 
 
 
 
 
 
 
 

, (2.9) 

где 𝑙 −длина элемента, 𝑠 ∈ [0, 𝑙] −продольная координата элемента. 

Используя 
𝑑2

𝑑𝑠2
 в качестве дифференциального оператора 𝑨, для вычисления 

приближенных деформаций получим: 

𝑩 =
𝑑2𝑵

𝑑𝑠2
=

[
 
 
 
 
 
 
 
12𝑠

𝑙3
−

6

𝑙2

6𝑠

𝑙2
−

4

𝑙
6

𝑙2
−

12𝑠

𝑙3

6𝑠

𝑙2
−

2𝑠

𝑙 ]
 
 
 
 
 
 
 

. (2.10) 

Поскольку все элементы матрицы 𝑩 не зависят от времени, её можно вынести 

за знак интеграла по времени в выражении (2.7). Учитывая при этом, что осевой 

момент инерции сечения определяется как 

𝐼𝑧 = ∫ 𝑦2𝑑𝐴
𝐴

 , (2.11) 
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получим: 

∫ 𝜌𝐴𝑵𝑻𝑵𝑑𝑠𝒅̈

𝑙

+ ∫ 𝑩𝑻𝜒𝐼𝑧𝑩𝑑𝑠𝒅̇

𝑙

+ ∫ 𝐸𝐼𝑧𝑩
𝑻

𝑙

𝑩∫𝑅(𝑡 − 𝜏)𝒅(𝜏)𝑑𝜏

𝑡

0

𝑑𝑠 = 𝑭.  (2.12) 

Здесь 𝑴𝒊 = ∫ 𝜌𝐴𝑵𝑻𝑵𝑑𝑠
𝑙

− матрица масс стрежневого элемента,  

𝑫𝒊 = ∫ 𝑩𝑻𝜒𝐼𝑧𝑩𝑑𝑠
𝑙

− матрица демпфирования стрежневого элемента, 

𝑲𝒊 = ∫ 𝐸𝐼𝑧𝑩
𝑻

𝑙
𝑩𝑑𝑠 − матрица жесткости стрежневого элемента,  

𝜒 = 𝐸𝑡𝑒, где 𝑡𝑒 −время запаздывания, 𝐸 − модуль упругости,  𝑭 – вектор узловых 

нагрузок. 

После интегрирования выражения для матрицы масс, получим её в 

стандартной форме, которая обыкновенно приводится в литературе, посвященной 

решению динамических задач методом конечных элементов, например в [98]:  

𝑴𝒊
изг =

𝜌𝐴𝑙

35

[
 
 
 
 
 
 
 13

11𝑙

6

9

2
−

13𝑙

12

11𝑙

6

𝑙2

3

13𝑙

12
−

𝑙2

4
9

2

13𝑙

12
13 −

11𝑙

6

−
13𝑙

12
−

𝑙2

4
−

11𝑙

6

𝑙2

3 ]
 
 
 
 
 
 
 

 , (2.13) 

где 𝑴𝒊
изг − матрица масс изгибаемого стержневого элемента. 

Для вывода матрицы жесткости изгибаемого элемента [9] используем 

вектора производных функций формы: 

𝑲𝒊
изг = ∫ 𝐸𝐼𝑧 [

12𝑠

𝑙3
−

6

𝑙2
6𝑠

𝑙2
−

4

𝑙

6

𝑙2
−

12𝑠

𝑙3
6𝑠

𝑙2
−

2𝑠

𝑙
] 

[
 
 
 
 
 
 
 
12𝑠

𝑙3
−

6

𝑙2

6𝑠

𝑙2
−

4

𝑙
6

𝑙2
−

12𝑠

𝑙3

6𝑠

𝑙2
−

2𝑠

𝑙 ]
 
 
 
 
 
 
 

𝑑𝑠.

𝑙

  (2.14) 

Выполнив умножение векторов и интегрирование, получим матрицу 

жесткости изгибаемого балочного элемента: 
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𝑲𝑖 = 𝐸𝐼𝑧

[
 
 
 
 
 
 
 

12

𝑙3
6

𝑙2
−

12

𝑙3
6

𝑙2

6

𝑙2
4

𝑙
−

6

𝑙2
2

𝑙

−
12

𝑙3
−

6

𝑙2
12

𝑙3
−

6

𝑙2

6

𝑙2
2

𝑙
−

6

𝑙2
4

𝑙 ]
 
 
 
 
 
 
 

 , (2.15) 

где 𝑲𝒊
изг − матрица жесткости изгибаемого стержневого элемента. 

Вывод матрицы демпфирования осуществляется аналогично тому, как это 

было сделано для матрицы жесткости: 

𝑫𝒊
изг = ∫ 𝑡𝑒𝐸𝐼𝑧 [

12𝑠

𝑙3
−

6

𝑙2
6𝑠

𝑙2
−

4

𝑙

6

𝑙2
−

12𝑠

𝑙3
6𝑠

𝑙2
−

2𝑠

𝑙
] 

[
 
 
 
 
 
 
 
12𝑠

𝑙3
−

6

𝑙2

6𝑠

𝑙2
−

4

𝑙
6

𝑙2
−

12𝑠

𝑙3

6𝑠

𝑙2
−

2𝑠

𝑙 ]
 
 
 
 
 
 
 

𝑑𝑠

𝑙

,  (2.16) 

В результате получим матрицу демпфирования изгибаемого стержневого 

элемента: 

𝑫𝒊
изг = 𝑡𝑒𝐸𝐼𝑧

[
 
 
 
 
 
 
 

12

𝑙3
6

𝑙2
−

12

𝑙3
6

𝑙2

6

𝑙2
4

𝑙
−

6

𝑙2
2

𝑙

−
12

𝑙3
−

6

𝑙2
12

𝑙3
−

6

𝑙2

6

𝑙2
2

𝑙
−

6

𝑙2
4

𝑙 ]
 
 
 
 
 
 
 

 , (2.17) 

 

где 𝑫𝒊
изг − матрица демпфирования изгибаемого стержневого элемента. 

Стоит отметить, что выведенная матрица демпфирования получилась 

аналогичной той, которая выводилась из условия стационарности полной энергии 

в [135]. 

После сборки локальных матриц масс 𝑴𝒊, демпфирования 𝑫𝒊 и жёсткости 𝑲𝒊 

в глобальные матрицы системы, уравнение движения в конечно-элементной 
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формулировке для нелокальной во времени модели динамического 

деформирования может быть записано следующим образом: 

𝑴𝒅̈ + 𝑫𝒅̇ + 𝑲∫ 𝑅(𝑡 − 𝜏)𝒅(𝜏)𝑑𝜏
𝑡

0

= 𝑭. (2.19) 

Здесь 𝑴 − глобальная матрица масс, 𝑫 − глобальная матрица 

демпфирования, 𝑲 − глобальная матрица жёсткости. 

При моделировании динамического поведения стержневой системы, 

необходимо учесть, что её элементы работают не только на изгиб, но и на 

растяжение-сжатие и имеют по три степени свободы в узле (Рисунок 2.6).  

 

Рисунок 2.6 – Нумерация степеней свободы рамного конечного элемента 

 

В случае растяжения-сжатия используются линейные интерполяционные 

полиномы: 

𝑵 = [1 −
𝑠

𝑙

𝑠

𝑙
], (2.20) 

где 𝑙 −длина элемента, 𝑠 ∈ [0, 𝑙] −продольная координата элемента. 

Для стержня, работающего на растяжение-сжатие деформации связаны с 

функцией прогиба следующим соотношением: 

𝜀11 =
𝑑𝑢

𝑑𝑥
 . (2.21) 

Здесь 𝑥 − продольная координата балки, 𝜀11 − осевая деформация, 𝑢 − 

продольное перемещение сечений стержня. 
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Используя 
𝑑

𝑑𝑠
 в качестве дифференциального оператора 𝑨, для вычисления 

приближенных деформаций получим: 

𝑩 =
𝑑𝑵

𝑑𝑠
= [−

1

𝑙

1

𝑙
]. (2.22) 

Матрица масс для элемента, работающего на растяжение сжатие имеет 

следующий вид: 

𝑴𝒊
прод

=
𝜌𝐴𝑙

3
[
1

1

2
1

2
1

]. (2.23) 

Здесь 𝑴𝒊
прод

− матрица масс на перемещениях в направлении продольной оси 

стержневого элемента. 

Для вывода матриц демпфирования и жесткости стержневого элемента, 

работающего на растяжение-сжатие подставим матрицу функций формы 𝑵 и 

матрицу приближенных деформаций 𝑩 в интегралы, полученные ранее (2.12) для 

матриц демпфирования и жесткости соответственно. В результате получим: 

 – матрицу демпфирования 

𝑫𝒊
прод

= ∫ 𝐸𝑡𝑒𝐴 [−
1

𝑙

1

𝑙
]  [

−
1

𝑙
1

𝑙

] 𝑑𝑠

𝑙

,  (2.24) 

– матрицу жесткости 

𝑲𝒊
прод

= ∫ 𝐸𝐴 [−
1

𝑙

1

𝑙
]  [

−
1

𝑙
1

𝑙

] 𝑑𝑠.

𝑙

  (2.25) 

Проведя вычисления, получим: 

– матрицу демпфирования стержневого элемента для растяжения-сжатия 

𝑫𝒊
прод

= 𝐸𝑡𝑒 [

А

𝑙
−

А

𝑙

−
А

𝑙

А

𝑙

], (2.26) 
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– матрицу жесткости стержневого элемента для растяжения-сжатия 

𝑲𝒊
прод

= 𝐸 [

А

𝑙
−

А

𝑙

−
А

𝑙

А

𝑙

]. (2.27) 

Здесь  𝑫𝒊
прод

, 𝑲𝒊
прод

− матрицы демпфирования и жесткости стержневого 

элемента, работающего на растяжение-сжатие. 

Суммирование двух матриц конечных элементов проведём согласно 

показанной на рисунке 2.6 нумерации степеней свободы рамного конечного 

элемента из матриц балочного стержневого конечного элемента, работающего на 

изгиб и сдвиг (Рисунок 2.7) и матриц стержневого конечного элемента, 

работающего на растяжение – сжатие (Рисунок 2.8). 

 

Рисунок 2.7 – Степени свободы балочного конечного элемента, работающего 

на изгиб 

 

 

Рисунок 2.8 – Степени свободы стержневого конечного элемента, 

работающего на растяжение – сжатие 
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После всех вычислений окончательно получим матрицы масс, 

демпфирования и жесткости для рамного элемента.   

Матрица масс конечного элемента: 

𝑴𝒊 =
𝜌𝐴𝑙

420

[
 
 
 
 
 
140 0 0 70 0 0
0 156 22𝑙 0 54 −13𝑙

0 22𝑙 4𝑙2 0 13𝑙 −3𝑙2

70 0 0 140 0 0
0 54 13𝑙 0 156 −22𝑙

0 −13𝑙 −3𝑙2 0 −22𝑙 4𝑙2 ]
 
 
 
 
 

, (2.28) 

Матрица демпфирования конечного элемента: 

𝑫𝑖 = 𝑡𝑒𝐸

[
 
 
 
 
 
 
 
 
 
 
 
 

𝐴

𝑙
0 0 −

𝐴

𝑙
0 0

0
12𝐼

𝑙3
6𝐼

𝑙2
0 −

12𝐼

𝑙3
6𝐼

𝑙2

0
6𝐼

𝑙2
4𝐼

𝑙
0 −

6𝐼

𝑙2
2𝐼

𝑙

−
𝐴

𝑙
0 0

𝐴

𝑙
0 0

0 −
12𝐼

𝑙3
−

6𝐼

𝑙2
0

12𝐼

𝑙3
−

6𝐼

𝑙2

0
6𝐼

𝑙2
2𝐼

𝑙
0 −

6𝐼

𝑙2
4𝐼

𝑙 ]
 
 
 
 
 
 
 
 
 
 
 
 

, (2.29) 

Матрица жесткости конечного элемента: 

𝑲𝑖 = 𝐸

[
 
 
 
 
 
 
 
 
 
 
 
 

𝐴

𝑙
0 0 −

𝐴

𝑙
0 0

0
12𝐼

𝑙3
6𝐼

𝑙2
0 −

12𝐼

𝑙3
6𝐼

𝑙2

0
6𝐼

𝑙2
4𝐼

𝑙
0 −

6𝐼

𝑙2
2𝐼

𝑙

−
𝐴

𝑙
0 0

𝐴

𝑙
0 0

0 −
12𝐼

𝑙3
−

6𝐼

𝑙2
0

12𝐼

𝑙3
−

6𝐼

𝑙2

0
6𝐼

𝑙2
2𝐼

𝑙
0 −

6𝐼

𝑙2
4𝐼

𝑙 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (2.30) 

 

  



50 

 

2.2. Решение уравнения движения с использованием неявной схемы 

 

Методы численного интегрирования уравнений движения можно условно 

разделить на две группы: явные и неявные. Явные методы, как правило, проще в 

смысле реализации и требуют меньше вычислительных затрат на каждый шаг, но 

чувствительны к выбору шага по времени.  

Явные методы [136] позволяют вычислить перемещения узлов системы в на 

следующем временном шаге, исходя из состояния системы в текущий момент 

времени и, как правило, не требуют решения глобальной системы, в то время как 

при использовании неявных методов выполняется решение уравнения, в котором 

фигурируют как известные, так и неизвестные значения перемещения на новом 

шаге 𝑡𝑖+1 которые входят в правую часть уравнения движения из-за чего на каждом 

шаге требуется решать систему алгебраических уравнений. Неявные методы 

требуют дополнительных вычислений, но обеспечивают устойчивость даже при 

относительно больших шагах численного интегрирования. 

На практике к наиболее распространенным явным методам относятся такие 

методы, как метод центральных разностей и прямой метод Эйлера. К наиболее 

распространенным неявным методам относятся: метод Ньюмарка [68], 

обобщённые α-методы, схемы численного интегрирования на основе методов 

Рунге–Кутты различных порядков. 

Метод Ньюмарка представляет собой неявный алгоритм, предназначенный 

для численного интегрирования дифференциальных уравнений второго порядка. 

Он основан на аппроксимации перемещений, скоростей и ускорений на каждом 

временном шаге через переменные, вычисленные на предыдущем шаге. Этот метод 

используется в большинстве современных конечно-элементных программ для 

решения задач шаговой динамики в линейной и нелинейной постановках. Метод 

Ньюмарка позволяет обеспечить хорошее сочетание точности, вычислительной 

устойчивости и эффективности, поэтому в дальнейшем для численной реализации 

разработанной модели была использована неявная схема по этому методу. 
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При использовании неявной схемы скорости и ускорения узлов конечно-

элементной модели представляют в виде [8]:  

𝒅̇𝑖+1 =
𝒅𝑖+1 − 𝒅𝑖

∆𝑡
;         𝒅̈𝑖+1 =

2

∆𝑡2
(𝒅𝑖+1 − 𝒅𝑖 − 𝒅𝑖

̇ ∆𝑡) − 𝒅𝑖
̈  . (2.31) 

Здесь 𝒅𝑖 − узловые перемещения в момент времени 𝑡𝑖, 𝒅𝑖
̇ − узловые скорости 

в момент времени 𝑡𝑖, 𝒅𝑖
̈ − узловые ускорение в момент времени 𝑡𝑖,  ∆𝑡 − шаг по 

времени.  

Выполнив все подстановки, выражение (2.19) можно представить в виде: 

𝑴[
2

∆𝑡2
(𝒅𝑖+1 − 𝒅𝑖 − 𝒅𝑖

̇ ∆𝑡) − 𝒅𝑖
̈ ] + 𝑫

1

∆𝑡
(𝒅𝑖+1 − 𝒅𝑖) + 𝑲𝑍 = 𝑭𝑖+1 (2.32) 

В качестве ядра нелокального оператора используется функция ошибок 

(1.18), которая, в силу того, что для решения уравнения движения используется 

итерационный метод, заменена дискретным аналогом (2.33). 

𝑍 = ∑
2𝜂

√𝜋
∙ 𝑒

−𝜂2(𝑡−(𝜏−
∆𝑡
2

))

2

𝒅𝑖
̈

𝑖

1

. (2.33) 

В связи с тем, что при использовании неявной схемы функция памяти 

наложена на весь процесс деформирования системы, начиная от момента 𝑡𝑖+1, 

дискретный аналог интегрального ядра был разделен на две части (Рисунок 2.9).  

𝛽 = ∆𝑡 ∑
2𝜂

√𝜋
𝑒−𝜂2(𝑡𝑖−𝑡𝑗−1)

2
𝑖

𝑗=1

;         𝛼 =
2𝜂

√𝜋
𝑒−𝜂2(𝑡𝑖+1−𝑡𝑖)

2
∆𝑡 . (2.34) 

Здесь 𝛼 – это часть площади ядровой функции, соответствующая 

перемещению 𝒅𝑖+1, а 𝛽  - площадь под остальной частью ядровой функции.  

При суммировании 𝛼 + 𝛽 = 1, и, таким образом, соблюдается условие 

нормирования (1.16). 
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Рисунок 2.9 – Разделение ядровой функции при интегрировании уравнения 

движения по неявной схеме 

 

Учитывая (2.34), выражение (2.32) можно представить в виде: 

𝑴[
2

∆𝑡2
(𝒅𝑖+1 − 𝒅𝑖 − 𝒅𝑖

̇ ∆𝑡) − 𝒅𝑖
̈ ] + 𝑫

1

∆𝑡
(𝒅𝑖+1 − 𝒅𝑖) + 𝑲𝛽 + 𝑲𝛼 = 𝑭𝑖+1 (2.35) 

Для удобства вычислений сгруппируем элементы уравнения при векторах 

неизвестных 𝒅𝑖, 𝒅𝑖
̇ , 𝒅𝑖

̈ . 

𝑸 =
2

∆𝑡2
𝑴 +

1

∆𝑡
𝑫 + 𝑲𝛼, 

𝑸1 =
2

∆𝑡
𝑴, 

𝑸2 =
2

∆𝑡2
𝑴 +

1

∆𝑡
𝑫 . 

(2.36) 

После всех преобразований вычислительная схема примет вид: 

𝑸𝒅𝑖+1 = 𝑭𝑖+1 + 𝐌𝒅𝑖
̈ + 𝑸1𝒅𝑖

̇ + 𝑸2𝒅𝑖 − 𝑲𝛽 . (2.37) 

 

2.3. Оценка влияния масштабного параметра на характер колебательного 

процесса изгибаемой балки  

 

Следующим этапом исследования стала оценка влияния масштабного 

параметра η на результаты численного моделирования динамического поведения 

изгибаемой балки. Решение уравнения движения балки, описанное в предыдущем 
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параграфе, было реализовано в программном модуле (Приложение 1,2), созданном 

на языке Python [70]. В качестве численного примера рассматривалась 12-ти 

метровая балка, защемленная по концам, расчетная схема которой представлена на 

рисунке 2.10. Материал балки - термореактивный винилэфирный стеклопластик I 

класса, характеристики которого, представленные в Таблице 2.1 экспериментально 

определялись в работе [112]. Балка имеет прямоугольное поперечное сечение 

высотой 30 см и шириной 20 см. Коэффициент относительного демпфирования 

материала принят 0,042. Балка загружена мгновенно приложенной и равномерно 

распределенной нагрузкой интенсивностью -10 кН/м. На первом шаге при i = 0 в 

качестве начальных условий принято 𝒅0 = 0, 𝒅0̇ = 0, 𝒅0̈ = 0. 

 

Рисунок 2.10 – Расчетная схема защемленной по краям балки 

 

Таблица 2.1 – Характеристики термореактивного винилэфирного 

стеклопластика I класса для одномерного моделирования: 

Модуль Юнга в продольном направлении, Elw 17,2 ГПа 

Коэффициент Пуассона в продольном направлении, μlw 0,32 

Плотность материала, ρ 1,9 кН/м3 

Относительный коэффициент демпфирования, χ 0,042 

 

В результате моделирования были получены три графика (Рисунок 2.11) 

колебаний при различных значениях масштабного параметра нелокальной модели. 
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Рисунок 2.11 – Графики вертикального перемещения центрального узла 

балки, полученные с для трех реализаций расчета при различных значениях 

масштабного параметра. Установившееся значение прогиба на момент времени 10 

секунд примерно равно – 0.0698 м. 

 

Анализируя полученные результаты, можно сделать следующие выводы: 

Масштабный параметр η оказывает влияние на амплитуду колебаний [8]. При 

уменьшении η наблюдается увеличение амплитуды колебаний конструкции. 

Частота колебаний остаётся неизменной при изменении η. 

Иными словами, увеличение степени нелокальности упругих свойств 

материала (уменьшение параметра η) приводит к тому, что модель становится 

более податливой в смысле амплитудного поведения, частота колебаний при этом 

не меняется. Важно отметить, что учет временной нелокальности упругих свойств 

в модели не влияет на итоговое значение прогиба и не противоречит статическим 

расчетам. 

Для проверки этого утверждения возьмем устаyовившееся значение прогиба 

на момент окончания колебательного процесса, которое примерно равно – 0.0698 

м, и сравним его со значением, полученным по статическому расчету для 

защемленной по краям балки, загруженной равномерно по краям балки с 
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равномерно распределенной нагрузкой, а именно: 

𝑓𝑚𝑎𝑥 = −
𝑞𝑙4

384𝐸𝐼
= −0.0698 м . (2.38) 

Это значит, что учет временной нелокальности упругих свойств в модели не 

влияет на итоговое значение прогиба балки и не противоречит классическим 

формулам сопротивления материалов.  

 

2.4. Моделирование колебаний П-образной рамы с использованием 

разработанной модели  

 

Решение встроить разработанную модель в алгоритм метода конечных 

элементов было принято с целью обеспечения её практической применимости для 

описания динамического поведения сравнительно сложных стержневых систем. 

Поэтому в качестве следующего численного примера для проверки применимости 

и устойчивости разработанной нелокальной во времени модели при переходе от 

простых к более сложным стержневым системам и оценки влияния  

масштабного параметра η на их динамическое поведение, была выбрана плоская  

П-образная рама [85] (Рисунок 2.12). 

Рама состоит из двух вертикальных стоек, жёстко защемлённых в основании, 

и горизонтального ригеля, жёстко соединённого со стойками по торцам. Наличие 

горизонтального и вертикальных элементов с различной геометрией поперечных 

сечений и ориентацией осей инерции позволяет оценить чувствительность 

масштабного параметра η к геометрическим и конструктивным изменениям в 

пределах системы. 

Высота каждой стойки рамы составляет 6 м, длина ригеля – 10 м. Сечения 

всех элементов приняты прямоугольными. Размеры сечения стоек – 40х40 см, а 

сечение ригеля – 30х40 см. Такая конфигурация обеспечивает большую жёсткость 

в вертикальных элементах при меньшей массе ригеля, что соответствует типичным 

проектным решениям для рамных систем. 
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К ригелю по всей длине приложена равномерно распределенная нагрузка 

интенсивностью q = -10 кН/м.  

 

Рисунок 2.12 – Расчетная схема П-образной рамы 

 

Как и предыдущем параграфе, в результате моделирования динамического 

поведения рамы при различных значениях масштабного параметра нелокальной 

модели были получены три графика колебаний. 

 

Рисунок 2.13 – Графики вертикального перемещения центрального узла 

ригеля рамы, полученные с для трех реализаций расчета с различными 

масштабными параметрами. 
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Аналогично рассмотренному ранее случаю для балки, по результатам 

моделирования динамического поведения рамы при трёх значениях масштабного 

параметра η установлено, что параметр η влияет на амплитуду колебаний, но не 

влияет на частоту колебаний. А также сохраняется закономерность, что при 

уменьшении параметра η (увеличении степени нелокальности) наблюдается рост 

амплитуды колебаний. 

 

2.5. Выводы по Главе 2 

 

1. Во второй главе выполнен вывод конечно-элементных соотношений 

для описания колебаний стержневых систем с использованием нелокальной во 

времени модели динамического деформирования материала. 

2. Решение уравнения движения с учетом нелокальных во времени 

упругих свойств материла выполнено с использованием неявной схемы Ньюмарка, 

обеспечивающей устойчивость расчёта при моделировании затухающих и 

вынужденных колебаний. 

3. Была проведена оценка влияния масштабного параметра на характер 

колебаний изгибаемой балки, и показано что масштабный параметр η оказывает 

влияние на амплитуду колебаний, но не влияет на частоту.  

4. Для оценки применимости предлагаемого подхода для описания 

динамического поведения сравнительно сложных стержневых систем, было 

выполнено моделирование колебаний П-образной рамы с учетов нелокальных во 

времени упругих свойств материала.  

5. Показано, что характер влияния масштабного параметра на результаты 

моделирования колебательного процесса, выявленный ранее для одиночной 

изгибаемой балки, сохраняется и для стержневой системы. 
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Глава 3. Методика калибровки нелокальной во времени модели 

динамического деформирования и её отработка по результатам 

численного эксперимента 

 

3.1. Методика калибровки нелокальной во времени модели упругих 

свойств материала по экспериментальным данным  

 

Одной из ключевых проблем при применении нелокальных моделей на 

практике является необходимость обоснованного определения масштабного 

параметра. В настоящем исследовании была разработана методика калибровки 

нелокальной во времени модели динамического деформирования материала по 

экспериментальным данным с применением математических методов 

оптимизации. 

Для этого была сформулирована задача оптимизации: найти такое значение 

масштабного параметра 𝜂, при котором расхождение между результатами 

численного моделирования и экспериментальными данными, были было бы 

минимальным. 

min
𝜂∈𝑍

𝐸𝑟𝑟(𝜂), (3.1) 

где 𝐸𝑟𝑟(𝜂) – целевая функция, а Z – допустимая область.  

Поставленная задача является задачей одномерной оптимизации. К 

классическим методам одномерной оптимизации относятся методы нулевого 

порядка: метод дихотомии, метод золотого сечения и метод квадратичной 

аппроксимации (метод Пауэлла). В задачах аппроксимации и обработки данных 

широко используется метод наименьших квадратов [84]. 

В рамках настоящего исследования была разработана методика определения 

масштабного параметра нелокальной модели по экспериментальным данным [137], 

в основе которой лежит метод наименьших квадратов. В ходе решения этой задачи 
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выполняется минимизация среднеквадратического отклонения между 

результатами численного моделирования и экспериментальными данными. Для 

поиска масштабного параметра, обеспечивающего минимальное 

среднеквадратическое отклонение от результатов экспериментальных измерений, 

использовался метод золотого сечения [1]. 

Пусть экспериментальные данные представлены в виде набора точек 

{(𝑡𝑖 , 𝑦𝑖
𝑒𝑥)}, а результатом численного моделирования является реализация 

колебательного процесса 𝑦𝑖
𝑚𝑜𝑑𝑒𝑙(𝜂), ординаты которой зависят от значения 

масштабного параметра 𝜂. Тогда среднеквадратическая ошибка определяется по 

формуле: 

𝐸𝑟𝑟(𝜂) =
1

𝑛
∑(𝑦𝑖

𝑒𝑥 − 𝑦𝑖
𝑚𝑜𝑑𝑒𝑙(𝜂))

2
𝑛

𝑖=1

, (3.2) 

где 𝑛 – количество шагов по времени, 𝑦𝑖
𝑒𝑥 – ордината графика перемещений, 

полученного из экспериментальных данных, 𝑦𝑖
𝑚𝑜𝑑𝑒𝑙(𝜂) – расчётное перемещение 

точки модели при заданном масштабном параметре 𝜂.  

Решение задачи минимизации ошибки 𝐸𝑟𝑟(𝜂) позволяет определить такое 

значение параметра 𝜂, при котором модель наилучшим образом совпадает с 

экспериментальными данными. 

 

Рисунок 3.1 – К определению масштабного параметра модели методом 

наименьших квадратов 
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Для нахождения минимума функции среднеквадратической ошибки 

𝐸𝑟𝑟(𝜂) используется метод золотого сечения. 

Метод золотого сечения относится к методам сокращения отрезка поиска. 

Алгоритмы методов этого класса построены на том, что начальный отрезок поиска 

возможных значений неизвестной переменной [a, b] последовательно сужается. 

Основная идея метода золотого сечения заключается в том, чтобы выбирать точки 

деления интервала в пропорции «золотого сечения»  

𝜑 =
√5−1

2
≈ 0,618, (3.3) 

что позволяет минимизировать количество вычислений функции, так как на 

всех шагах кроме первого необходимо будет считать лишь одно новое значение. 

На каждом шаге метода проводится сравнение значений целевой функции 

𝐸𝑟𝑟(𝜂) в двух внутренних точках интервала: 

𝜂1 = 𝑏 − 𝜑(𝑏 − 𝑎), 𝜂2 = 𝑎 + 𝜑(𝑏 − 𝑎) (3.4) 

Далее вычисляются значения целевой функции в этих точках 𝐸𝑟𝑟(𝜂1),

𝐸𝑟𝑟(𝜂2), после чего одна из частей отсекается – та, в которой заведомо не 

содержится минимум.  

Преимуществом метода золотого сечения является простота его реализации, 

отсутствие необходимости вычислять производные и гарантированная сходимость 

для непрерывных функций, унимодальных на рассматриваемом участке. 

Дополнительное преимущество – вычислительная эффективность: начиная со 

второй итерации требуется вычислять значение целевой функции лишь в одной 

новой точке.  

Например, рассмотрим интервал [a, b]. Краевые точки интервала 

принимаются с заведомо не минимальными значениями функций в данных точках; 

для конкретного материала, определить подобные точки можно на основании 

экспериментальных данных. После предварительных вычислительных 

экспериментов было выявлено, что для термореактивного винилэфирного 

стеклопластика I класса (Таблица 3.1) наиболее подходящим интервалом  

для калибровки модели с использованием данного материала, является  
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интервал от a=20 до b=100 (Рисунок 3.2). 

 

Рисунок 3.2 – Деление интервала [a, b] в пропорции «золотого сечения» на первой 

итерации 

 

Пусть после первой итерации значение функции в точке 𝜂1 меньше значения 

функции в точке 𝜂2. 

𝐸𝑟𝑟(𝜂1) < 𝐸𝑟𝑟(𝜂2) (3.5) 

Тогда отбросим отрезок [𝜂2,b] после чего рассматривается новый отрезок  

[a, 𝜂2]. Так же поделим его в пропорции «золотого сечения» (Рисунок 3.3).  

 

 

Рисунок 3.3 – График деления интервала в пропорции «золотого сечения» на 

второй итерации 
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Вычислив значение 𝜂4, можно увидеть, что 𝜂4 = 𝜂1, а значит, нет 

необходимости повторно вычислять значение целевой функции в данной точке. 

Таким образом, при сохранении пропорции «золотого сечения» на втором шаге нам 

уже известны значения целевой функции в трех из четырех точек [a, 𝜂4, 𝜂2], 

необходимых для расчета следующего шага, и остается только вычислить одно 

оставшееся значение 𝜂3. Таким образом, начиная со второй итерации, алгоритм 

выполняет ровно один расчет целевой функции за шаг, что позволяет сократить 

число обращений к целевой функции во внутреннем цикле и такое сокращение 

напрямую ускоряет расчёт без ущерба для точности и сходимости. 

Итерационный процесс продолжается до тех пор, пока длина интервала  

[a, b] не станет меньше заданной точности ε. 

Важно отметить, что в таком случае целевая функция 𝐸𝑟𝑟(𝜂) должна быть 

непрерывна и иметь всего один единственный минимум. 

Для проверки данного утверждения был получен график 

среднеквадратичной ошибки в зависимости от масштабного параметра модели для 

одного из рассмотренных в разделе 3.3 численных экспериментов и выглядит он 

следующим образом: 

 

Рисунок 3.3 – График среднеквадратичной ошибки в зависимости от масштабного 

параметра модели полученный в результате калибровки модели 
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Представленный график отражает зависимость среднеквадратического 

расхождения между экспериментальными данными и результатами численного 

моделирования от значения масштабного параметра η нелокальной модели. Кривая 

имеет унимодальный характер с единственным чётко выраженным минимумом. 

При малых значениях η наблюдается резкий рост ошибки, обусловленный 

чрезмерным вкладом эффектов временной нелокальности и нарушением условия 

нормирования. Тогда как при больших значениях масштабного параметра ошибка 

возрастает вследствие ослабления эффектов памяти и приближения модели к 

классической локальной.  

По мере увеличения масштабного параметра ядровая функция нелокальной 

модели стремится к дельта-функции, в результате чего нелокальная модель 

приближается к классической локальной модели, не обладающей эффектом памяти 

и, как следствие, среднеквадратичная ошибка выходит на «плато».  

Следует отметить, что наличие одного отчётливого минимума целевой 

функции 𝐸𝑟𝑟(𝜂) подтверждает корректность процедуры калибровки и 

обоснованность применения метода золотого сечения, а также говорит о её 

высокой надежности при решении задачи определения масштабного параметра. 

 

3.2. Построение трёхмерной конечно-элементной модели для реализации 

численного эксперимента 

 

Для первоначальной отработки разработанной методики калибровки 

использовались результаты численных экспериментов. Определение масштабного 

параметра η производилось на основе сравнения результатов численного 

эксперимента с результатами, полученными по одномерной модели с учетом 

нелокальных во времени упругих свойств материала. В качестве численного 

эксперимента рассматривалась модель композитной балки, собранная из 

трехмерных твердотельных конечных элементов с учетом ортотропных свойств 

материала. Численный эксперимент был реализован в верифицированном 

программном комплексе MIDAS-Civil. Для корректного описания колебательного 
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процесса при численном моделировании деформирования композитных 

конструкций в настоящем исследовании использовались твердотельные 

восьмиузловые конечные элементы [9].  

На первом этапе моделировалась двенадцатиметровая балка, защемленная по 

концам, аналогичная балке, рассмотренной ранее во второй главе (Рисунок 3.4).  

 

Рисунок 3.4 – Расчетная схема защемленной по краям балки 

 

В качестве материала балки был принят термореактивный винилэфирный 

стеклопластик I класса [112], причем свойства материала считались разными в 

продольном и поперечном направлениях (Таблица 3.1). Балка в поперечном 

сечении представляет собой прямоугольник высотой 0,3м и шириной 0,2м. Балка 

загружена мгновенно приложенной и равномерно распределенной нагрузкой 

интенсивностью -10 кН/м.  

 

Таблица 3.1 – Характеристики термореактивного винилэфирного 

стеклопластика I класса: 

Модуль Юнга в продольном направлении, Elw 17,2 ГПа 

Модуль Юнга в поперечном направлении, Ecw 12,2 ГПа 

Коэффициент Пуассона в продольном направлении, μlw 0,32 

Коэффициент Пуассона в поперечном направлении, μcw 0,15 

Плотность материала, ρ 1,9 кН/м3 

Относительный коэффициент демпфирования, χ 0,042 

Прочность на разрыв, σразр 241 МПа 
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Использование восьмиузловых конечных элементов обоснованно их 

универсальностью и точностью получаемых результатов. В каждом узле 

твердотельного элемента три степени свободы, соответствующие перемещениям 

по координатным осям x, y и z, что позволяет адекватно описывать как 

нормальные, так и сдвиговые деформации объёмного тела. Аппроксимация 

перемещений внутри элемента осуществляется с использованием трилинейных 

интерполяционных функций (линейных по каждой координате).  

В рамках настоящей работы конструировались модели трёхмерных 

композитных балок и рамных конструкций. Результаты, полученные с 

использованием этих моделей, послужили основой для калибровки одномерной 

нелокальной во времени модели и определения масштабного параметра, 

характеризующего степень проявления эффектов нелокальности в материале. 

 

Рисунок 3.5 – Общий вид трехмерной КЭ модели в трехмерной постановке 

из твердотельных КЭ, построенная в расчетном комплексе MIDAS-Civil 

 

Как и ранее в главе 2, нагрузка задавалась как мгновенно приложенная и 

равномерно распределенная. Для этого равномерно распределенная нагрузка, 

показанная на расчетной схеме (Рисунок 3.4), была распределена по ширине 

верхней грани балки. Заданные свойства материала приведены на рисунке 3.6.  
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Рисунок 3.6 – Заданные ортотропные свойства материала 

 

После построения геометрии модели, задания соответствующих физических 

свойств и граничных условий было выполнено численное моделирование. Расчёт 

позволил получить пространственное распределение перемещений по всему 

объёму конструкции, в частности, в центральном узле балки (Рисунок 3.7), на 

каждом шаге итерационного процесса. 

 

Рисунок 3.7 – Деформированный вид КЭ модели в трехмерной постановке 
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На рисунке 3.8 приведен полученный по результатам моделирования график 

перемещений центрального узла во времени.  

 

 

Рисунок 3.8 – График перемещения центрального узла, полученный в 

результате трехмерного моделирования с учётом ортотропных свойств материала. 

Установившееся значение прогиба на момент времени 10 секунд равно – 0.0698 м. 

 

Для оценки корректности построенной модели установившееся значение 

прогиба после окончания колебательного процесса сравнивалось со значение, 

полученным по классической формуле сопротивления материалов для статической 

задачи о защемленной по краям балке, загруженной равномерно распределенной 

нагрузкой: 

𝑓𝑚𝑎𝑥 = −
𝑞𝑙4

384𝐸𝐼
= −0.0698 м . (3.6) 

Совпадение значений показывает, что численная модель не противоречит 

классическим аналитическим соотношениям. 
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3.3. Калибровка нелокальной во времени модели упругих свойств 

материала по результатам численного эксперимента для балки  

 

В качестве начального приближения для сравнения была использована 

одномерная модель, приближенная к классической локальной вязкоупругой 

модели, где в качестве модели внутреннего демпфирования использована модель 

Фойгта (Рисунок 3.9).  

 

Рисунок 3.9 – Сравнение результатов численного эксперимента с 

результатами одномерного моделирования по модели, приближенной к 

классической локальной модели. Величина относительной ошибки: 12,97% 

 

Для оценки степени расхождения результатов одномерного математического 

моделирования и данных численного эксперимента была вычислена относительная 

ошибка (3.7): 

𝑒𝑟𝑟отн. =
√𝐸𝑟𝑟(𝜂)

𝑓𝑚𝑎𝑥 
. (3.7) 

Здесь 𝑒𝑟𝑟отн. – относительная ошибка, 𝐸𝑟𝑟(𝜂) – среднеквадратическая 

ошибка при вычисленном значении 𝜂, 𝑓𝑚𝑎𝑥 – установившееся значение прогиба 

рассматриваемой стержневой системы. 
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Сравнивая результаты численного эксперимента с результатами, 

полученными по модели, приближенной к классической локальной, можно сказать, 

что расхождения по амплитуде весьма значительны, что указывает на 

ограниченность применимости классического подхода в некотором классе задач. 

Далее была проведена калибровка (Рисунок 3.10) нелокальной во времени 

модели упругих свойств материала, по данным численного эксперимента, 

полученным с использованием модели, описанной в предыдущем параграфе.  

 

  

Рисунок 3.10 – Сравнение результатов численного эксперимента с 

результатами одномерного моделирования с использованием откалиброванной 

нелокальной во времени модели динамического деформирования. Величина 

относительной ошибки: 2,66% 

 

Результаты одномерного моделирования по нелокальной во времени модели 

упругих свойств материала (рисунок 3.10) показали значительное снижение 

относительной ошибки и улучшение соответствия данным численного 

эксперимента, несмотря на то, что в одномерной модели не учитывались 

ортотропные свойства материала (в силу допущений и размерности модели). 
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Таким образом, применение нелокального по времени подхода при 

построении одномерных моделей позволяет добиться более высокой точности 

описания динамических процессов, возникающих в системах, выполненных из 

неоднородных материалов, без использования ресурсоемкого трёхмерного 

моделирования, что особенно актуально при решении задач оптимизации. 

 

3.4. Оценка устойчивости откалиброванной нелокальной во времени 

модели динамического деформирования стержневых элементов 

 

Практическая применимость любой модели определяется не только её 

соответствием экспериментальным данным, но и универсальностью. Очевидно, 

что если модель требует повторной калибровки по экспериментальным данным 

каждый раз при изменении геометрии конструкции, то её применение на практике 

становится крайне затруднительным. Поэтому в рамках настоящего исследования 

был проведен поиск закономерностей, позволяющих оценивать масштабный 

параметр η без необходимости проведения повторных калибровок. 

Для выявления возможных закономерностей была проведена серия 

численных экспериментов для жестко защемленных по краям балок различной 

длины (Рисунок 3.11). Результаты моделирования представлены в таблице 3.2 и на 

Рисунке 3.12. 

 

Рисунок 3.11 – Расчетная схема для серии численных экспериментов с 

переменной длиной балок. 
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Таблица 3.2 – Результаты серии численных экспериментов. 

L, м 
χ

𝑬
, с η, 1/с 

Соотношение* 

коэффициентов 

вязкости 

Соотношение* 

масштабных 

параметров 

10 0,014 52,9 1,00 1,00 

11 0,017 44,8 0,83 0,85 

12 0,021 38,3 0,69 0,73 

13 0,024 34,0 0,59 0,64 

14 0,028 29,6 0,51 0,56 

15 0,032 26,3 0,44 0,50 

16 0,036 22,9 0,39 0,43 

17 0,041 20,6 0,35 0,39 

18 0,046 18,3 0,31 0,35 

 * – Все соотношения в таблице 3, получены относительно величин, 

определенных для балки длиной 10 м. 

Здесь L −длина балки, χ − коэффициент вязкости,  𝑬 −модуль Юнга, η 

− масштабный параметр 

 

Важно отметить, что внутреннее трение в трехмерной модели, используемой 

в качестве численного эксперимента, является частотно зависимым. То есть 

коэффициент вязкости меняется при изменении геометрии балки, так как 

собственная частота колебаний конструкции зависит от её геометрических 

параметров. Для наглядности сравнение соотношений показано в виде графиков на 

рисунке 3.12. 
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Рисунок 3.12– Графики соотношения коэффициентов вязкости и 

соотношения масштабных параметров. 

 

В результате анализа полученных данных было установлено, что существует 

устойчивая взаимосвязь между изменением коэффициента вязкости и масштабного 

параметра: отношение масштабных параметров между балками разных длин 

оказывается близким к отношению соответствующих коэффициентов вязкости. 

Это открывает возможность аппроксимации параметра η при известных 

демпфирующих свойствах системы. 

Исходя из полученных результатов и принимая во внимание схожесть 

графиков соотношения коэффициентов вязкости и соотношения масштабных 

параметров, можно заключить, что если для определенного материала был 

единожды определен масштабный параметр, то через соотношение коэффициентов 

вязкости или же через соотношение частот для разных конструкций можно 

приближенно определить масштабный параметр для конструкции, выполненной из 

того же материала, но с другой геометрией. 

Например, если для балки длиной 10 метров из таблицы 3.2 был определен 

масштабный параметр η = 52,9 1/с и известен коэффициент вязкости, то через 

соотношение коэффициентов вязкости можно найти значение  
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масштабного параметра для балки длиной 12 метров:  

η12 = η10

𝛘10

𝛘12
= 52,9

0,014

0,021
= 36,5 1/с . (3.8) 

Здесь η12 − масштабный параметр для балки длиной 12 м, полученный путем 

аппроксимации, η10 − масштабный параметр для балки длиной 10 м, 𝛘10 − 

коэффициент вязкости для балки длиной 10 м,  𝛘12 − коэффициент вязкости для 

балки длиной 12 м. 

Использовав полученное значение в качестве параметра нелокальной модели 

при численном моделировании, получим следующий результат (Рисунок 3.13):  

 

 

Рисунок 3.13 – Сравнение результатов численного эксперимента с 

результатами одномерного моделирования с использованием модели нелокальной 

по времени деформирования для балки длиной 12 м при масштабном параметре η 

= 36,50 1/с. Величина относительной ошибки: 3,93% 

 

Из рисунка 3.13 видно, что график полученный с использованием 

нелокальной модели при масштабном параметре, вычисленном по формуле (3.8) 

схож с результатами численного эксперимента, а различие в относительных 

ошибках не велико, что подтверждает возможность использования предложенной 
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методики определения масштабного параметра для материалов, 

характеризующихся частотно зависимым внутренним трением, на практике. 

Так же на основании приведенных в таблице 3.2 результатов было 

сформулировано предположение: если бы демпфирование в численном 

эксперименте было частотно независимым, то и масштабный параметр η также 

сохранял бы постоянное значение, вне зависимости от геометрии конструкции.  

Для проверки этой гипотезы было проведено моделирование балок длиной 

12 и 14 метров. При этом в расчётах коэффициент вязкости был задан как условно 

частотно независимый. Чтобы компенсировать изменение частот собственных 

колебаний и, соответственно, изменение коэффициентов вязкости для балок 

различной длины, относительный коэффициент демпфирования материала 𝜉 =

0.042 для балки длиной 14 метров был умножен на отношения частот между этими 

балками (3.9).  

𝜉14 = 𝜉12

𝜈14

𝜈12
= 0.031 . (3.9) 

Здесь 𝜉12, 𝜉14 − коэффициенты относительного демпфирования,  𝜈12, 𝜈14 − 

частота собственных колебаний для балок длиной 12 и 14 метров соответственно 

Таким образом демпфирующие свойства для 14–и метровой балки были 

приведены к демпфирующим свойствам для балки длиной 12 метров (Рисунок 

3.14). Такой подход обеспечил сопоставимые характеристики демпфирования в 

моделируемых системах. 

 

 

Рисунок 3.14 – Заданные свойства материала для балки длиной 14 метров 

с учетом соотношения частот между балками 12 и 14 метров. 
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С использованием этих данных было проведено трехмерное моделирование, 

на основании результатов которого калибровалась нелокальная модель 

динамического деформирования. 

 

 

Рисунок 3.15 – Сравнение результатов условно частотно независимого 

численного эксперимента с результатами модели нелокального по времени 

деформирования для балки длиной 14 метров при расчетном масштабном 

параметре η = 38,34 1/с. Величина относительной ошибки: 4,54% 

 

Как видно из полученных результатов, для условно частотно независимого 

демпфирования для балки длиной 14 метров (Рисунок 3.15) с сохранением 

масштабного параметра η = 38,34 1/с, полученного при калибровке по данным 

численного эксперимента для балки длиной 12 м, величина относительной ошибки 

осталась в пределах 5%. Таким образом можно сделать вывод, что в случае 

частотно независимого демпфирования масштабный параметр η можно считать 

постоянным для конструкций с различной геометрией, выполненных из одного 

материала. Различия в относительных ошибках невелико, что подтверждает 

корректность ранее высказанного предположения. 

Таким образом, было показано, что нелокальная во времени модель 
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динамического деформирования стержневых систем может использоваться без 

повторной калибровки масштабного параметра, что делает её применимой в 

некотором классе динамических задач. 

 

3.5. Калибровка нелокальной во времени модели упругих свойств 

материала по результатам численного моделирования колебаний стержневой 

системы   

 

Для оценки применимости разработанной модели для описания 

динамического поведения стержневых систем в качестве численного примера была 

рассмотрена П-образная рама [85]. Модель этой рамы была реализована с 

использованием нелокального подхода, ранее рассмотренному во второй главе.  

Рассматриваемая рама была выполнена из того же материала, что и балка в 

предыдущем примере (Таблица 3.1). Геометрические параметры, а также нагрузка 

и закрепления отражены в расчетной схеме (Рисунок 3.16). Трехмерная 

твердотельная модель рамы (Рисунок 3.17), также, как и ранее рассмотренная 

модель балки, создавалась с учетом ортотропных свойств материала (Рисунок 

3.17). 

 

Рисунок 3.16 – Расчетная схема П-образной рамы 
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Рисунок 3.17 – Общий вид конечно-элементной модели, собранной из 

трехмерных твердотельных конечных элементов, построенная в расчетном 

комплексе MIDAS-Civil. Заданные ортотропные свойства материала 

 

После сборки модели и задания соответствующих физических свойств 

проводилось трехмерное моделирование динамического поведения рамы методом 

конечных элементов. В результате вычислений были получены перемещения 

элементов конструкции в пространстве и времени, в том числе в центральной части 

ригеля рамы (Рисунок 3.18). 
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Рисунок 3.18 – Деформированный вид КЭ модели в трехмерной постановке 

 

По результатам моделирования был построен график перемещений 

центрального узла во времени (Рисунок 3.19). 

 

Рисунок 3.19 – График перемещения центрального узла полученный в 

результате трехмерного моделирования  
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Полученный график был экспортирован в алгоритм калибровки нелокальной 

во времени модели, который был модифицирован для работы со стержневыми 

системами. 

Как и ранее для балки результаты трехмерного моделирования сначала 

сравнивались с результатами, полученными с использованием классической 

локальной модели (Рисунок 3.20).  

 

 

Рисунок 3.20 – Сравнение результатов численного эксперимента с 

результатами одномерного моделирования по модели, приближенной к 

классической локальной модели. Величина относительной ошибки: 13,56% 

 

Полученные результаты однозначно указывают на то, что одномерная 

классическая локальная модель не позволяет с достоверной точностью описать 

поведение трехмерной модели. 

Далее была проведена калибровка нелокальной во времени модели 

динамического деформирования стержневой системы, по результатам численного 

эксперимента (Рисунок 3.21).  
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Рисунок 3.21 – Сравнение результатов численного эксперимента, с 

результатами одномерного моделирования с использованием откалиброванной 

модели нелокального во времени деформирования. 

Величина относительной ошибки: 5,41% 

 

Как и ранее для балки, результаты моделирования откалиброванной модели 

показали значительное снижение относительной ошибки в сравнении с 

классической моделью несмотря на то, что в нелокальной модели по-прежнему не 

учитывались ортотропные свойства материала. 

Так же важно отметить, что получившаяся частота колебаний рамы 

приблизительно равна 𝜈рамы = 0.022 1/с , а масштабный параметр ηрамы =

37,8 1/с. Эти значения близки к результатам, полученным ранее для балки длиной 

12 метров (Таблица 3.2) 𝜈балки = 0.021 1/с , а масштабный параметр ηбалки =

38,3 1/с, что ещё раз позволяет сделать вывод, что масштабный параметр 

нелокальной модели является характеристикой именно материала. 

Таким образом, показано, что нелокальная во времени модель динамического 

деформирования может быть использована для моделирования динамического 

поведения моделей сложных стержневых систем с учетом характерных 

особенностей поведения материала. 
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3.6. Выводы по Главе 3 

 

1. Разработана и реализована методика калибровки масштабного 

параметра нелокальной во времени модели, основанная на минимизации 

относительного расхождения между одномерным моделированием и результатами 

численного эксперимента, реализованного с учетом ортотропных свойств 

композитного материала. Применение комбинации метода наименьших квадратов 

и метода золотого сечения позволило обеспечить эффективную калибровку 

нелокальной модели. 

2. Нелокальная модель продемонстрировала хорошее совпадение 

результатов с результатами, полученным при трехмерном моделировании с учетом 

ортотропных свойств материала, что говорит о возможности применения данной 

модели в ряде задач оптимизации, при расчётах динамически нагруженных 

стержневых систем. 

3. Установлено, что при частотно независимом демпфировании 

масштабный параметр сохраняется постоянным независимо от геометрии балки, 

что указывает на то, что масштабный параметр является параметром материала, и 

подтверждает возможность применения модели без необходимости повторной 

калибровки при изменении геометрии.  

4. Верификация модели проводилась на примере композитных балок и 

пространственной П-образной рамы, что позволило подтвердить устойчивость и 

применимость разработанной модели к конструкциям различной сложности с 

учётом ортотропных свойств материала. 
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Глава 4. Определение масштабного параметра нелокальной во 

времени модели упругих свойств материала по результатам 

лабораторного эксперимента 

 

4.1.  Описание экспериментальной установки 

 

Для оценки жизнеспособности разработанной нелокальной во времени 

модели динамического деформирования стержневых систем была выполнена её 

калибровка по результатам лабораторных динамических испытаний балок из 

высокопрочных лёгких бетонов. Лабораторный эксперимент выполнен при 

поддержке НОЦ «Наноматериалы и нанотехнологии» и НИИ экспериментальной 

механики НИУ МГСУ. 

Балки для испытаний были изготовлены из цементных композитов, 

разработанных в лаборатории НОЦ «Наноматериалы и нанотехнологии» НИУ 

МГСУ. Материалы характеризуются пределом прочности – от 40 до 106 МПа – при 

плотности, варьирующейся от 1300 до 1900 кг/м³ [35].  

В рамках лабораторных испытаний были исследованы балки (Рисунок 4.1), 

изготовленные из различных типов цементных композиционных материалов. В 

качестве наполнителей использовались: керамические микросферы, стеклянные 

микросферы и стеклянные микросферы с добавлением микрофибры.  

 

Рисунок 4.1 – рассматриваемые балки в опалубке  
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Рисунок 4.2 – Экспериментальная установка – балка, шарнирно опертая по 

краям 

 

Рисунок 4.3 – Экспериментальная установка – балка жестко защемленная по 

концам  

 

Рассматриваемые балки были или шарнирно оперты (Рисунок 4.2) или 

жестко защемлены по концам (Рисунок 4.3), (Таблица 4.1). 

Параметры балок, исследованных в рамках динамических испытаний 

приведены в таблице 4.1: 

Таблица 4.1 – Параметры исследуемых балок: 

Номер Наименование 
Плотность 

ρ, кг/м3 
Заполнитель 

Схема 

закрепления 

1 1700К 1700 керамические микросферы 
Жесткое 

защемление 

2 1700С 1700 стеклянные микросферы 
Шарнирное 

опирание 

3 1900СФ 1900 
стеклянные микросферы с 

добавление фибры 

Жесткое 

защемление 



84 

 

В ходе испытаний производилась запись ускорений рассматриваемой балки, 

возникающих после однократного импульсного воздействия ударным молотком 

для модальных испытаний производства фирмы Bruel&Kjaer [108] (Рисунок 4.4). 

Молоток оснащён встроенным датчиком силы удара (IEPE/CCLD) и комплектом 

сменных наконечников различной жёсткости (мягкий полиуретан/пластик – для 

низкочастотного возбуждения, алюминий/сталь – для расширения полосы к 

высоким частотам). 

 

Рисунок 4.4 – Фотография ударного молотка. 

 

Для регистрации ускорений конструкции в середине и четверти пролета 

балки были установлены одноосевые акселерометры с чувствительностью  

100 мВ/g (милливольт на единицу ускорения свободного падения), 

ориентированные по нормали к плоскости изгиба. Крепление выполнялось через 

тонкий слой адгезива. Полученный сигнал синхронизировался и регистрировался с 

использованием многоканальной измерительной системы National Instruments 

PXIe-1082 [107], обеспечивающей частоту дискретизации до 10 МГц.  

Импульсное воздействие на каждую испытуемую балку осуществлялось 

дважды: первый раз возле акселерометра в середине пролета, и второй раз возле 

акселерометра в четверти пролета. 

В результате экспериментов были получены файлы с синхронизированными 

дорожками из трех каналов: канал С1 – значения силы удара с ударного молотка, 

канал С2 – значения ускорений, полученные с акселерометра в середине пролета, 
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канал С3 – значения ускорений, полученные с акселерометра в четверти пролета. 

Частота записи, с которой синхронизировались данные, равна 𝜈записи = 20480 Гц. 

Также в качестве исходных данных для моделирования лаборатория предоставила 

вычисленные интенсивности импульсного воздействия, прикладываемые к балкам, 

на основании значений, полученных из канала С1 (Таблица 4.2). 

 

Таблица 4.2 – Параметры внешней нагрузки: 

Номер Наименование 
Сила удара в четверти 

пролета, Н 

Сила удара в середине 

пролета, Н 

1 1700К 22.202 21.856 

2 1700С 15.295 19.244 

3 1900СФ 20.953 13.688 

 

Для определения эталона, по которому будет происходить дальнейшая 

калибровка модели, необходимо определить значимые участки исходных 

акселерограмм (Рисунок 4.5, Приложение 4), полученных из канала С2. Для 

выделения основного периода колебаний были обработаны исходные 

акселерограммы. Значимый участок акселерограммы отличается максимальной 

амплитудой и чётко выраженной синусоидальной формой. 

 

Рисунок 4.5 – Акселерограмма лабораторного эксперимента для жестко 

защемленной балки 1700К, импульсном воздействии, приложенном в середине 

пролёта. 
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Выделенные участки акселерограмм (Рисунок 4.6, Приложение 4) были 

использованы в качестве эталонов, с которым сравнивались результаты 

одномерного моделирования по нелокальной во времени модели динамического 

деформирования. Основной задачей стало определение значения масштабного 

параметра η для каждого материала.  

 

 

Рисунок 4.6 – Выборка из акселерограммы лабораторного эксперимента для 

жестко защемленной балки 1700К, при импульсном воздействии, приложенном в 

середине пролёта. 

 

4.2. Калибровка по результатам лабораторного эксперимента  

 

Для того, чтобы численно смоделировать динамическое поведение 

рассматриваемых балок, использовалась нелокальная во времени модель 

динамического деформирования, разработанная во второй главе. Геометрические 

соотношения балок, колебания которых исследовались в эксперименте, а точнее 

соотношение их длин и высот поперечных сечений, позволяют использовать 

модель балки Эйлера-Бернулли.   
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Для решения задачи калибровки нелокальной модели по данным 

лабораторных испытаний необходимы следующие исходные данные: 

1) расчетные схемы, соответствующие экспериментальным установкам; 

2) характеристики материала; 

3) граничные условия; 

4) интенсивность внешней нагрузки. 

 

Расчетные схемы исследуемых балок приведены на рисунках 4.7 и 4.8, а 

также в таблице 4.3 

 

 

Рисунок 4.7 – Расчетная схема экспериментальной установки для шарнирно 

опертой по краям балки 

 

 

Рисунок 4.8 – Расчетная схема экспериментальной установки для жестко 

защемленной балки по краям 
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Характеристики материалов были определены в лабораторных условиях, и 

представлены в таблице 4.3. 

 

Таблица 4.3 – Характеристики материала балок: 

Характеристики материала балки:  1700К 1700С 1900СФ 

Модуль Юнга E, ГПа 75,0 30,0 68,0 

Плотность материала ρ, т/м3 1,7  1,7 1,9 

Относительный коэфф. демпфирования χ 0,0765 0,0785 0,044 

 

Локальные матрицы масс, жесткости и демпфирования балочных конечных 

элементов вычисляются по формулам 2.13, 2.16, 2.18 соответственно с 

использованием характеристик материалов, приведенных в таблице 4.3. 

Глобальные матрицы масс, жесткости и демпфирования собирались в соответствии 

с расчетными схемами (Рисунок 4.5 и 4.6). Также в соответствии с расчетными 

схемами выполнялось и назначение граничных условий. 

Внешнее воздействие было смоделировано в виде сосредоточенной, 

кратковременно действующей силы.  

Калибровка модели производилась по методике, описанной в 3 главе. Для 

этого все полученные исходные данные экспортировались в программный модуль 

для калибровки, реализованный на языке Python. Как показала предварительная 

калибровка в ручном режиме, оптимальные пределы поиска масштабного 

параметра для цементных композитов, используемых в данных экспериментах, 

находятся в пределах от 1000 до 3000 1/c, так как в отличие от термореактивного 

винилэфирного стеклопластика I класса, используемого для численных 

экспериментов в 3 главе, цементные композиты значительно более жесткие [138]. 

Как и ранее для численных экспериментов, для начала сравним результаты 

лабораторного эксперимента с результатами моделирования одномерной 

классической локальной модели. 
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Рисунок 4.9 – Сравнение результатов лабораторного эксперимента 1700К с 

результатами, полученными с использованием одномерной модели, приближенной 

к классической локальной.  

 

Как видно на графике, классическая локальная модель не позволяет 

достоверно описать колебательный процесс балки из цементного композита. 

Поэтому далее представлены результаты откалиброванных моделей для балок из 

материала 1700К, 1700С и 1900СФ соответственно. Результаты калибровки 

представлены на рисунках 4.10, 4.11 и 4.12 соответственно. 
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Рисунок 4.10 – Сравнение результатов для балки 1700К с результатами 

откалиброванной нелокальной модели, при импульсном воздействии, 

приложенном в середине пролёта. 

 

По результатам калибровки модели для балки 1700К видно, что используя 

нелокальную во времени модель динамического деформирования можно сократить 

величину среднеквадратичной ошибки. Это означает, что данная модель позволяет 

с большей достоверностью описывать колебательный процесс подобных 

структурно сложных композитных материалов в сравнении с классическими 

локальными моделями. 

Далее была проведена аналогичная калибровка для балок 1700С и 1900СФ.  
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Рисунок 4.11 – Сравнение результатов для балки 1700С с результатами 

откалиброванной нелокальной модели, при импульсном воздействии, 

приложенном в середине пролёта. 

  

Рисунок 4.12 – Сравнение результатов для балки 1900СФ с результатами 

откалиброванной нелокальной модели, при импульсном воздействии, 

приложенном в середине пролёта. 
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Для оценки достоверности полученных значений масштабного параметра 

была проведена верификация по акселерограммам, полученных для тех же самых 

балок, но при импульсном воздействии в четверти пролета. В этом случае не 

проводилась калибровка, вместо этого было проведено моделирование с заранее 

установленными масштабными параметрами, полученными на предыдущем 

этапе. Результаты сопоставлялись с акселерограммой, полученной при 

импульсном воздействии в четверти пролёта, что позволило оценить устойчивость 

и физическую обоснованность найденного значения масштабного параметра. 

 

 

Рисунок 4.13 – Сравнение результатов для балки 1700К с результатами 

откалиброванной нелокальной модели, при импульсном воздействии, 

приложенном в четверти пролёта. 
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Рисунок 4.14 – Сравнение результатов для балки 1700С с результатами 

откалиброванной нелокальной модели, при импульсном воздействии, 

приложенном в четверти пролёта. 

 

 

Рисунок 4.15 – Сравнение результатов для балки 1900СФ с результатами 

откалиброванной нелокальной модели, при импульсном воздействии, 

приложенном в четверти пролёта. 
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Сравнение результатов, полученных с использованием нелокальной модели, 

с экспериментальными данными показало, что масштабный параметр сохраняется 

при изменении условий нагружения. Это подтверждает вывод, сделанный ранее 

при отработке методики калибровки нелокальной модели по результатам 

численных экспериментов: масштабный параметр является параметром материала. 

  

 

4.3. Вывод по Главе 4 

 

1. Выполнена экспериментальная верификация разработанной 

нелокальной во времени модели динамического деформирования стержневых 

систем с использованием акселерограмм, полученных в ходе лабораторных 

испытаний балок из цементных композитов. 

2. Для калибровки масштабного параметра η использована 

предварительная цифровая обработка экспериментального сигнала, включая 

фильтрацию и выборку основного колебательного интервала, что позволило 

выделить репрезентативный участок акселерограммы для последующего 

сравнения с модельными расчётами. 

3. Проведено сопоставление результатов одномерного моделирования по 

классической вязкоупругой модели и по откалиброванной нелокальной во времени 

модели. Установлено, что последняя обеспечивает значительно более точное 

воспроизведение экспериментальных данных. 

4. Полученные результаты демонстрируют практическую применимость 

разработанного подхода и подтверждают возможность использования нелокальной 

модели в задачах инженерного анализа и проектирования динамически 

нагруженных стержневых систем. 
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Заключение 

1. Проведен анализ существующих моделей динамического поведения 

стержневых элементов и систем, выполненных из композитных материалов, и 

выявлено, что нелокальный подход позволяет создавать гибкие и управляемые 

модели, позволяющие достоверно описывать поведение таких материалов. 

2. Разработана нелокальная во времени модель динамического 

деформирования стержневых элементов и систем. 

3. На основании результатов, полученных с использованием 

разработанной модели, показано, что она может служить менее ресурсоемкой 

альтернативой подробным трехмерным моделям при описании динамического 

поведения материалов с развитой внутренней структурой. 

4. Выполнена интеграция разработанной модели в алгоритм метода 

конечных элементов, с целью обеспечения её применимости при решении 

прикладных задач. 

5. Разработана методика определения масштабного параметра 

нелокальной во времени модели с использованием экспериментальных данных. 

6. На результатах серии численных экспериментов отработана методика 

определения масштабного параметра нелокальной во времени модели, и на 

основании полученных результатов показано, что масштабный параметр является 

характеристикой материала. 

7. Обоснована возможность применения разработанной модели для 

описания динамического поведения материалов, характеризующихся частотно 

независимым внутренним трением. 

8. Показано, что в сравнении с локальной классической моделью 

разработанная в диссертации модель позволяет добиться лучшего совпадения с 

результатами лабораторных экспериментов. 

9. Рекомендуется использовать данную модель в качестве альтернативы 
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подробным трехмерным моделям при решении задач оптимального 

проектирования стержневых систем, выполненных из композитных материалов. 

10. В качестве перспективы дальнейших исследований в этом направлении 

может быть рассмотрена комбинация модели, представленной в диссертации, с 

моделями, основанными на других типах нелокальности. 
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Приложение 1. Свидетельство о регистрации 
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Приложение 2. Тексты основных компьютерных программ 

 

1. Используемые библиотеки 

 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib.ticker as ticker 

import pandas as pd 

import math 

 

 

2. Функция для решения системы уравнений движения 

стержневого элемента методом Ньюмарка 

#Функция FEA (расчет перемещений) 

def FEA(ita): 

    #Формирование нелокального ярда  

    Z_time=np.zeros((1,n_t))    #Создание нулевого горизонтального вектора 

нелокального ядра 

    ai=2*ita/(math.pi**0.5)      #Константа нелокального ядра 

    bi=math.exp(-(ita**2)*0)     #Первый элемент неременной части нелокального 

ядра 

    Zi=ai*bi                    #i-ый элемент 

    #Цикл формирования нелокального ядра 

    for j in range(1,n_t):       

        bi=math.exp(-(ita**2)*(t_inc*j)**2)           

#Переменная часть нелокального ядра 

        Zj=ai*bi                                    #j-ый элемент 

        Z_time[0,j-1]=(Zi+Zj)/2                      

#Присвоение j-1 элементу нелокального ядра значения равному среднему между i-ым 

и j-ым элементом 

        Zi=Zj                                        

#Присвоение значения j-го элемента i-му для следующего периода цикла 

 

    beta=np.zeros((1,n_t-1))                         

#Формирование нулевого горизонтального верктора нелокального ядра за 

исключением 1-го элемента  

    alpha=Z_time[0,0]*t_inc                          

#1-ый весовой коэффициент (Для реализации метода Ньюмарка) 

    beta[0,:]=np.copy(Z_time[0,1:])                  

#Горизонтальный верктор нелокального ядра за исключением 1-го элемента  

 

    #Решение уравнения движения 

    u=np.zeros((dof,n_t))   #Формирование матрицы перемещений 

    v=np.zeros((dof,n_t))   #Формирование матрицы скоростей 
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    a=np.zeros((dof,n_t))   #Формирование матрицы ускорений 

    t=np.zeros((1,n_t))     #Формирование вектора времени 

    R=np.zeros((dof,1))     #Формирование реактивного вектора  

 

    Q1=2*M/t_inc                #Константная матрица при матрице скоростей v 

    Q2=(2*M/t_inc+D)/t_inc      #Константная матрица при матрице перемещений u 

    Q=2*M/t_inc**2+D/t_inc+K*alpha      

#Константная матрица при матрице перемещений u+1 

    Q=np.linalg.inv(Q)                 #Обратная матрица Q 

 

    for i in range(1,n_t):   

        t[0,i]=t_inc*i                                          

        dnl=np.zeros((dof,1)) 

        for j in range(0,i):                      # 

            dnl[:,0]+=t_inc*u[:,i-j]*beta[:,j-1]     # 

         

        R[:,0]=F[:,0]+M@a[:,i-1]+Q1@v[:,i-1]+Q2@u[:,i-1]-K@dnl[:,0]      

#Получение реактивной матрицы 

                 

        u[:,i]=Q[:,:]@R[:,0]                                                  

#Запись текущего перемещения в матрицу 

        a[:,i]=2/t_inc**2*(u[:,i]-u[:,i-1]-v[:,i-1]*t_inc)-a[:,i-1]      

#Запись текущего ускорения в матрицу 

        v[:,i]=v[:,i-1]+(a[:,i-1]+a[:,i])/2*t_inc                        

#Запись текущей скорости в матрицу 

    return u[n_pan,:] 

 

3. Функция определения среднеквадратичной ошибки 

методом наименьших квадратов  

 

# Функция LSM (метод наименьших квадратов) 

def LSM(ita): 

    disp_iter=list[0:n_t]   

    disp_iter=FEA(ita) 

    return np.sum((experiment-disp_iter[0:n_t:n_t//len(experiment)])**2) 

 

4. Функция минимизации среднеквадратичной ошибки 

методом золотого сечения  

 

# Функция golden (золотого сечения) 

def golden(function, a, b, eps, epsLSM): 

    fi=(1+math.sqrt(5))/2 

    n=0 
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    while abs(b - a) > eps: 

        start_time = time.time() 

        n+=1 

        print('Итерация номер',n) 

        c=(a+b)/2 

        print('a=',a) 

        print('b=',b) 

        x1=c-(b-a)*(1/fi-0.5) 

        x2=c+(b-a)*(1/fi-0.5) 

        print('x1=',x1) 

        print('x2=',x2) 

        fx1=function(x1) 

        fx2=function(x2) 

        print('fx1=',fx1) 

        print('fx2=',fx2) 

        if fx1 > fx2: 

            print('fx1 > fx2') 

            a=x1 

        else: 

            print('fx1 < fx2') 

            b=x2 

        end_time = time.time() 

        print('Время на выполнение цикла: ', end_time - start_time) 

    return (a+b)/2 

         

 

 

5. Программа для построения графика изменения прогиба 

стержневого элемента во времени с учётом нелокальной во времени 

упругости 

 

#Вывод графика 

plt.rcParams['font.family'] = 'serif ' #Установка шрифтов ВСЕГО текста 

 

fig, graf = plt.subplots(figsize=(7, 3.5),layout='constrained') 

 

graf.tick_params(axis='x',which='major', width=1.00, length=5,labelsize=12,) 

graf.tick_params(axis='y',which='major', width=1.00, length=5,labelsize=12, 

grid_color='none') 

graf.tick_params(which='minor', width=0.75, length=2.5) # direction='in' 

graf.xaxis.set_major_locator(ticker.MultipleLocator(1)) 

graf.xaxis.set_minor_locator(ticker.MultipleLocator(0.25)) 

graf.yaxis.set_major_locator(ticker.AutoLocator()) 

graf.yaxis.set_minor_locator(ticker.AutoMinorLocator()) 

graf.grid('on') 
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ita_round=round(ita, 2) 

graf.plot(  x_axis_model,  

            y_axis_model, 

            color='k', 

            linestyle='-', 

            linewidth=1.5,  

            label=f'Локальная модель')     #Настройки печати для графика 

перемещений 

ita_round=round(ita, 2) 

graf.plot(  x_axis_experiment,  

            y_axis_experiment, 

            color='r', 

            linestyle='--', 

            linewidth=1.5,  

            label=f'Эксперимент')     #Настройки печати для графика перемещений 

 

graf.set_ylim((graf.get_ylim()[0]),0)   

graf.set_xlim(0,(math.floor(graf.get_xlim()[1])))  

graf.xaxis.tick_bottom()                          

graf.yaxis.tick_left()   

 

plt.xlabel ('Время, с', fontsize=16)  

plt.ylabel ('Перемещение, м', fontsize=16)  

plt.title('Перемещение центрального узла ригеля рамы', fontsize=16) 

plt.legend (loc='upper right', fontsize=16)  

plt.show()                                                                   
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Приложение 3. Обработка результатов полученных в ходе 

лабораторного эксперимента 

 

Рисунок П3.1 – Акселерограмма лабораторного эксперимента для жестко 

защемленной балки 1700К, при импульсном воздействии, приложенном в четверти 

пролёта. 

 

Рисунок П3.2 – Акселерограмма лабораторного эксперимента для шарнирно 

опертой балки 1700С, при импульсном воздействии, приложенном в середине 

пролёта. 
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Рисунок П3.3 – Акселерограмма лабораторного эксперимента для шарнирно 

опертой балки 1700С, при импульсном воздействии, приложенном в четверти 

пролёта. 

 

 

Рисунок П3.4 – Акселерограмма лабораторного эксперимента для жестко 

защемленной балки 1900СФ, при импульсном воздействии, приложенном в 

середине пролёта. 
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Рисунок П3.4 – Акселерограмма лабораторного эксперимента для жестко 

защемленной балки 1900СФ, при импульсном воздействии, приложенном в 

четверти пролёта. 

 

 

Рисунок П3.5 – Выборка из акселерограммы лабораторного эксперимента 

для жестко защемленной балки 1700К, при импульсном воздействии, приложенном 

в четверти пролёта. 
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Рисунок П3.6 – Выборка из акселерограммы лабораторного эксперимента 

для шарнирно опертой балки 1700С, при импульсном воздействии, приложенном в 

середине пролёта. 

 

Рисунок П3.7 – Выборка из акселерограммы лабораторного эксперимента 

для шарнирно опертой балки 1700С, при импульсном воздействии, приложенном в 

четверти пролёта. 
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Рисунок П3.8 – Выборка из акселерограммы лабораторного эксперимента 

для жестко защемленной балки 1900СФ, при импульсном воздействии, 

приложенном в середине пролёта. 

 

Рисунок П3.9 – Выборка из акселерограммы лабораторного эксперимента 

для жестко защемленной балки 1900СФ, при импульсном воздействии, 

приложенном в четверти пролёта. 


